Cargando…
De Novo Design of Protein Kinase Inhibitors by in Silico Identification of Hinge Region-Binding Fragments
[Image: see text] Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points fo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2013
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833278/ https://www.ncbi.nlm.nih.gov/pubmed/23534475 http://dx.doi.org/10.1021/cb300729y |
_version_ | 1782291818029776896 |
---|---|
author | Urich, Robert Wishart, Grant Kiczun, Michael Richters, André Tidten-Luksch, Naomi Rauh, Daniel Sherborne, Brad Wyatt, Paul G. Brenk, Ruth |
author_facet | Urich, Robert Wishart, Grant Kiczun, Michael Richters, André Tidten-Luksch, Naomi Rauh, Daniel Sherborne, Brad Wyatt, Paul G. Brenk, Ruth |
author_sort | Urich, Robert |
collection | PubMed |
description | [Image: see text] Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible with hinge-region binding, and docked into a panel of protein kinases. Fragments with a high consensus score were subsequently short-listed for synthesis. Application of this strategy led to a number of core fragments with no previously reported activity against kinases. Small libraries around the core fragments were synthesized, and representative compounds were tested against a large panel of protein kinases and subjected to co-crystallization experiments. Each of the tested compounds was active against at least one kinase, but not all kinases in the panel were inhibited. A number of compounds showed high ligand efficiencies for therapeutically relevant kinases; among them were MAPKAP-K3, SRPK1, SGK1, TAK1, and GCK for which only few inhibitors are reported in the literature. |
format | Online Article Text |
id | pubmed-3833278 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-38332782013-11-19 De Novo Design of Protein Kinase Inhibitors by in Silico Identification of Hinge Region-Binding Fragments Urich, Robert Wishart, Grant Kiczun, Michael Richters, André Tidten-Luksch, Naomi Rauh, Daniel Sherborne, Brad Wyatt, Paul G. Brenk, Ruth ACS Chem Biol [Image: see text] Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible with hinge-region binding, and docked into a panel of protein kinases. Fragments with a high consensus score were subsequently short-listed for synthesis. Application of this strategy led to a number of core fragments with no previously reported activity against kinases. Small libraries around the core fragments were synthesized, and representative compounds were tested against a large panel of protein kinases and subjected to co-crystallization experiments. Each of the tested compounds was active against at least one kinase, but not all kinases in the panel were inhibited. A number of compounds showed high ligand efficiencies for therapeutically relevant kinases; among them were MAPKAP-K3, SRPK1, SGK1, TAK1, and GCK for which only few inhibitors are reported in the literature. American Chemical Society 2013-03-27 2013-05-17 /pmc/articles/PMC3833278/ /pubmed/23534475 http://dx.doi.org/10.1021/cb300729y Text en Copyright © 2013 American Chemical Society Terms of Use CC-BY (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) |
spellingShingle | Urich, Robert Wishart, Grant Kiczun, Michael Richters, André Tidten-Luksch, Naomi Rauh, Daniel Sherborne, Brad Wyatt, Paul G. Brenk, Ruth De Novo Design of Protein Kinase Inhibitors by in Silico Identification of Hinge Region-Binding Fragments |
title | De Novo Design of Protein Kinase
Inhibitors by in Silico Identification of Hinge Region-Binding
Fragments |
title_full | De Novo Design of Protein Kinase
Inhibitors by in Silico Identification of Hinge Region-Binding
Fragments |
title_fullStr | De Novo Design of Protein Kinase
Inhibitors by in Silico Identification of Hinge Region-Binding
Fragments |
title_full_unstemmed | De Novo Design of Protein Kinase
Inhibitors by in Silico Identification of Hinge Region-Binding
Fragments |
title_short | De Novo Design of Protein Kinase
Inhibitors by in Silico Identification of Hinge Region-Binding
Fragments |
title_sort | de novo design of protein kinase
inhibitors by in silico identification of hinge region-binding
fragments |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833278/ https://www.ncbi.nlm.nih.gov/pubmed/23534475 http://dx.doi.org/10.1021/cb300729y |
work_keys_str_mv | AT urichrobert denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT wishartgrant denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT kiczunmichael denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT richtersandre denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT tidtenlukschnaomi denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT rauhdaniel denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT sherbornebrad denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT wyattpaulg denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments AT brenkruth denovodesignofproteinkinaseinhibitorsbyinsilicoidentificationofhingeregionbindingfragments |