Cargando…
A-Site mRNA Cleavage Is Not Required for tmRNA-Mediated ssrA-Peptide Tagging
In Escherichia coli, prolonged translational arrest allows mRNA degradation into the A site of stalled ribosomes. The enzyme that cleaves the A-site codon is not known, but its activity requires RNase II to degrade mRNA downstream of the ribosome. This A-site mRNA cleavage process is thought to func...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834316/ https://www.ncbi.nlm.nih.gov/pubmed/24260569 http://dx.doi.org/10.1371/journal.pone.0081319 |
Sumario: | In Escherichia coli, prolonged translational arrest allows mRNA degradation into the A site of stalled ribosomes. The enzyme that cleaves the A-site codon is not known, but its activity requires RNase II to degrade mRNA downstream of the ribosome. This A-site mRNA cleavage process is thought to function in translation quality control because stalled ribosomes are recycled from A-site truncated transcripts by the tmRNA-SmpB “ribosome rescue” system. During rescue, the tmRNA-encoded ssrA peptide is added to the nascent chain, thereby targeting the tagged protein for degradation after release from the ribosome. Here, we examine the influence of A-site mRNA cleavage upon tmRNA-SmpB activity. Using a model transcript that undergoes stop-codon cleavage in response to inefficient translation termination, we quantify ssrA-peptide tagging of the encoded protein in cells that contain (rnb(+)) or lack (Δrnb) RNase II. A-site mRNA cleavage is reduced approximately three-fold in Δrnb backgrounds, but the efficiency of ssrA-tagging is identical to that of rnb (+) cells. Additionally, pulse-chase analysis demonstrates that paused ribosomes recycle from the test transcripts at similar rates in rnb (+) and Δrnb cells. Together, these results indicate that A-site truncated transcripts are not required for tmRNA-SmpB-mediated ribosome rescue and suggest that A-site mRNA cleavage process may play a role in other recycling pathways. |
---|