Cargando…

Increased Flavonoid Compounds from Fermented Houttuynia cordata using Isolated Six of Bacillus from Traditionally Fermented Houttuynia cordata

Flavonoids, which form a major component in Houttuynia cordata Thunb., display a wide range of pharmacological activities. The expression of plant flavonoids is partly regulated by fermentation. Therefore, we studied the effects of fermentation on H. cordata in order to identify the strains present...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Ryun Hee, Ha, Bae Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Toxicology 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834406/
https://www.ncbi.nlm.nih.gov/pubmed/24278599
http://dx.doi.org/10.5487/TR.2012.28.2.117
Descripción
Sumario:Flavonoids, which form a major component in Houttuynia cordata Thunb., display a wide range of pharmacological activities. The expression of plant flavonoids is partly regulated by fermentation. Therefore, we studied the effects of fermentation on H. cordata in order to identify the strains present during the fermentation process, and to determine whether fermented H. cordata could be used as a probiotic. Our results showed that all 6 of the bacterial strains isolated from fermented H. cordata (FHC) belonged to the genus Bacillus. As expected, fermenting H cordata also increased the flavonoid content as increases were observed in the levels of rutin, quercitrin, and quercetin. To test the effects of fermentation, we treated LPS-stimulated RAW264.7 cells with non-fermented H. cordata extracts (HCE) or FHC extracts (FHCE). Compared to the HCE-treated cells, the FHCE-treated cells showed increased viability. No cytotoxic effects were detected in the FHCE-treated groups in the 2 cell lines used in the study, namely, RAW264.7 and RBL-2H3. FHCE-treated HepG2 cells showed decreased growth, compared to HCE-treated HepG2 cells. These results indicate that the fermented H. cordata predominantly contained Bacillus strains. Furthermore, FHCE are able to prevent LPS-induced inflammatory effects and inhibit the growth of HepG2 cells.