Cargando…
Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing
In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI), although some “escape” XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836711/ https://www.ncbi.nlm.nih.gov/pubmed/24278033 http://dx.doi.org/10.1371/journal.pgen.1003952 |
_version_ | 1782292333578944512 |
---|---|
author | Horvath, Lindsay M. Li, Nan Carrel, Laura |
author_facet | Horvath, Lindsay M. Li, Nan Carrel, Laura |
author_sort | Horvath, Lindsay M. |
collection | PubMed |
description | In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI), although some “escape” XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s) retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI. |
format | Online Article Text |
id | pubmed-3836711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38367112013-11-25 Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing Horvath, Lindsay M. Li, Nan Carrel, Laura PLoS Genet Research Article In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI), although some “escape” XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s) retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI. Public Library of Science 2013-11-21 /pmc/articles/PMC3836711/ /pubmed/24278033 http://dx.doi.org/10.1371/journal.pgen.1003952 Text en © 2013 Horvath et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Horvath, Lindsay M. Li, Nan Carrel, Laura Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing |
title | Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing |
title_full | Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing |
title_fullStr | Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing |
title_full_unstemmed | Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing |
title_short | Deletion of an X-Inactivation Boundary Disrupts Adjacent Gene Silencing |
title_sort | deletion of an x-inactivation boundary disrupts adjacent gene silencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836711/ https://www.ncbi.nlm.nih.gov/pubmed/24278033 http://dx.doi.org/10.1371/journal.pgen.1003952 |
work_keys_str_mv | AT horvathlindsaym deletionofanxinactivationboundarydisruptsadjacentgenesilencing AT linan deletionofanxinactivationboundarydisruptsadjacentgenesilencing AT carrellaura deletionofanxinactivationboundarydisruptsadjacentgenesilencing |