Cargando…
Methods and challenges in timing chromosomal abnormalities within cancer samples
Motivation: Tumors acquire many chromosomal amplifications, and those acquired early in the lifespan of the tumor may be not only important for tumor growth but also can be used for diagnostic purposes. Many methods infer the order of the accumulation of abnormalities based on their occurrence in a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842754/ https://www.ncbi.nlm.nih.gov/pubmed/24064421 http://dx.doi.org/10.1093/bioinformatics/btt546 |
_version_ | 1782292983409803264 |
---|---|
author | Purdom, Elizabeth Ho, Christine Grasso, Catherine S. Quist, Michael J. Cho, Raymond J. Spellman, Paul |
author_facet | Purdom, Elizabeth Ho, Christine Grasso, Catherine S. Quist, Michael J. Cho, Raymond J. Spellman, Paul |
author_sort | Purdom, Elizabeth |
collection | PubMed |
description | Motivation: Tumors acquire many chromosomal amplifications, and those acquired early in the lifespan of the tumor may be not only important for tumor growth but also can be used for diagnostic purposes. Many methods infer the order of the accumulation of abnormalities based on their occurrence in a large cohort of patients. Recently, Durinck et al. (2011) and Greenman et al. (2012) developed methods to order a single tumor’s chromosomal amplifications based on the patterns of mutations accumulated within those regions. This method offers an unprecedented opportunity to assess the etiology of a single tumor sample, but has not been widely evaluated. Results: We show that the model for timing chromosomal amplifications is limited in scope, particularly for regions with high levels of amplification. We also show that the estimation of the order of events can be sensitive for events that occur early in the progression of the tumor and that the partial maximum likelihood method of Greenman et al. (2012) can give biased estimates, particularly for moderate read coverage or normal contamination. We propose a maximum-likelihood estimation procedure that fully accounts for sequencing variability and show that it outperforms the partial maximum-likelihood estimation method. We also propose a Bayesian estimation procedure that stabilizes the estimates in certain settings. We implement these methods on a small number of ovarian tumors, and the results suggest possible differences in how the tumors acquired amplifications. Availability and implementation: We provide implementation of these methods in an R package cancerTiming, which is available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/. Contact: epurdom@stat.Berkeley.edu Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-3842754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-38427542013-12-02 Methods and challenges in timing chromosomal abnormalities within cancer samples Purdom, Elizabeth Ho, Christine Grasso, Catherine S. Quist, Michael J. Cho, Raymond J. Spellman, Paul Bioinformatics Original Papers Motivation: Tumors acquire many chromosomal amplifications, and those acquired early in the lifespan of the tumor may be not only important for tumor growth but also can be used for diagnostic purposes. Many methods infer the order of the accumulation of abnormalities based on their occurrence in a large cohort of patients. Recently, Durinck et al. (2011) and Greenman et al. (2012) developed methods to order a single tumor’s chromosomal amplifications based on the patterns of mutations accumulated within those regions. This method offers an unprecedented opportunity to assess the etiology of a single tumor sample, but has not been widely evaluated. Results: We show that the model for timing chromosomal amplifications is limited in scope, particularly for regions with high levels of amplification. We also show that the estimation of the order of events can be sensitive for events that occur early in the progression of the tumor and that the partial maximum likelihood method of Greenman et al. (2012) can give biased estimates, particularly for moderate read coverage or normal contamination. We propose a maximum-likelihood estimation procedure that fully accounts for sequencing variability and show that it outperforms the partial maximum-likelihood estimation method. We also propose a Bayesian estimation procedure that stabilizes the estimates in certain settings. We implement these methods on a small number of ovarian tumors, and the results suggest possible differences in how the tumors acquired amplifications. Availability and implementation: We provide implementation of these methods in an R package cancerTiming, which is available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/. Contact: epurdom@stat.Berkeley.edu Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2013-12-15 2013-09-23 /pmc/articles/PMC3842754/ /pubmed/24064421 http://dx.doi.org/10.1093/bioinformatics/btt546 Text en © The Author 2013. Published by Oxford University Press. All rights reserved. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Papers Purdom, Elizabeth Ho, Christine Grasso, Catherine S. Quist, Michael J. Cho, Raymond J. Spellman, Paul Methods and challenges in timing chromosomal abnormalities within cancer samples |
title | Methods and challenges in timing chromosomal abnormalities within cancer samples |
title_full | Methods and challenges in timing chromosomal abnormalities within cancer samples |
title_fullStr | Methods and challenges in timing chromosomal abnormalities within cancer samples |
title_full_unstemmed | Methods and challenges in timing chromosomal abnormalities within cancer samples |
title_short | Methods and challenges in timing chromosomal abnormalities within cancer samples |
title_sort | methods and challenges in timing chromosomal abnormalities within cancer samples |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842754/ https://www.ncbi.nlm.nih.gov/pubmed/24064421 http://dx.doi.org/10.1093/bioinformatics/btt546 |
work_keys_str_mv | AT purdomelizabeth methodsandchallengesintimingchromosomalabnormalitieswithincancersamples AT hochristine methodsandchallengesintimingchromosomalabnormalitieswithincancersamples AT grassocatherines methodsandchallengesintimingchromosomalabnormalitieswithincancersamples AT quistmichaelj methodsandchallengesintimingchromosomalabnormalitieswithincancersamples AT choraymondj methodsandchallengesintimingchromosomalabnormalitieswithincancersamples AT spellmanpaul methodsandchallengesintimingchromosomalabnormalitieswithincancersamples |