Cargando…

Inhomogeneous Sparseness Leads to Dynamic Instability During Sequence Memory Recall in a Recurrent Neural Network Model

Theoretical models of associative memory generally assume most of their parameters to be homogeneous across the network. Conversely, biological neural networks exhibit high variability of structural as well as activity parameters. In this paper, we extend the classical clipped learning rule by Wills...

Descripción completa

Detalles Bibliográficos
Autores principales: Medina, Daniel, Leibold, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844438/
https://www.ncbi.nlm.nih.gov/pubmed/23876197
http://dx.doi.org/10.1186/2190-8567-3-8