Cargando…

Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data

Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these antibodies bind is of great value in defining targets f...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferguson, Andrew L., Falkowska, Emilia, Walker, Laura M., Seaman, Michael S., Burton, Dennis R., Chakraborty, Arup K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846483/
https://www.ncbi.nlm.nih.gov/pubmed/24312481
http://dx.doi.org/10.1371/journal.pone.0080562
_version_ 1782293435142635520
author Ferguson, Andrew L.
Falkowska, Emilia
Walker, Laura M.
Seaman, Michael S.
Burton, Dennis R.
Chakraborty, Arup K.
author_facet Ferguson, Andrew L.
Falkowska, Emilia
Walker, Laura M.
Seaman, Michael S.
Burton, Dennis R.
Chakraborty, Arup K.
author_sort Ferguson, Andrew L.
collection PubMed
description Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these antibodies bind is of great value in defining targets for vaccine and drug design. Drawing on techniques from compressed sensing and information theory, we developed a computational methodology to predict key residues constituting the conformational epitopes on the viral spike from cross-clade neutralization activity data. Our approach does not require the availability of structural information for either the antibody or antigen. Predictions of the conformational epitopes of ten broadly neutralizing HIV-1 antibodies are shown to be in good agreement with new and existing experimental data. Our findings suggest that our approach offers a means to accelerate epitope identification for diverse pathogenic antigens.
format Online
Article
Text
id pubmed-3846483
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-38464832013-12-05 Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data Ferguson, Andrew L. Falkowska, Emilia Walker, Laura M. Seaman, Michael S. Burton, Dennis R. Chakraborty, Arup K. PLoS One Research Article Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these antibodies bind is of great value in defining targets for vaccine and drug design. Drawing on techniques from compressed sensing and information theory, we developed a computational methodology to predict key residues constituting the conformational epitopes on the viral spike from cross-clade neutralization activity data. Our approach does not require the availability of structural information for either the antibody or antigen. Predictions of the conformational epitopes of ten broadly neutralizing HIV-1 antibodies are shown to be in good agreement with new and existing experimental data. Our findings suggest that our approach offers a means to accelerate epitope identification for diverse pathogenic antigens. Public Library of Science 2013-12-02 /pmc/articles/PMC3846483/ /pubmed/24312481 http://dx.doi.org/10.1371/journal.pone.0080562 Text en © 2013 Ferguson et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ferguson, Andrew L.
Falkowska, Emilia
Walker, Laura M.
Seaman, Michael S.
Burton, Dennis R.
Chakraborty, Arup K.
Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data
title Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data
title_full Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data
title_fullStr Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data
title_full_unstemmed Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data
title_short Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data
title_sort computational prediction of broadly neutralizing hiv-1 antibody epitopes from neutralization activity data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846483/
https://www.ncbi.nlm.nih.gov/pubmed/24312481
http://dx.doi.org/10.1371/journal.pone.0080562
work_keys_str_mv AT fergusonandrewl computationalpredictionofbroadlyneutralizinghiv1antibodyepitopesfromneutralizationactivitydata
AT falkowskaemilia computationalpredictionofbroadlyneutralizinghiv1antibodyepitopesfromneutralizationactivitydata
AT walkerlauram computationalpredictionofbroadlyneutralizinghiv1antibodyepitopesfromneutralizationactivitydata
AT seamanmichaels computationalpredictionofbroadlyneutralizinghiv1antibodyepitopesfromneutralizationactivitydata
AT burtondennisr computationalpredictionofbroadlyneutralizinghiv1antibodyepitopesfromneutralizationactivitydata
AT chakrabortyarupk computationalpredictionofbroadlyneutralizinghiv1antibodyepitopesfromneutralizationactivitydata