Cargando…
The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion
BACKGROUND: Because neuroprotective effects of estrogen remain controversial, we aimed to investigate the effect of different doses of estradiol (E2) on cerebral ischemia using both in vivo and in vitro experiments. RESULTS: PC12 cells were cultured at physiological (10 nM and 20 nM) or pharmacologi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851874/ https://www.ncbi.nlm.nih.gov/pubmed/24106772 http://dx.doi.org/10.1186/1471-2202-14-118 |
_version_ | 1782294372371398656 |
---|---|
author | Ma, Yu-Long Qin, Pei Li, Yan Shen, Lan Wang, Shi-Quan Dong, Hai-Long Hou, Wu-Gang Xiong, Li-Ze |
author_facet | Ma, Yu-Long Qin, Pei Li, Yan Shen, Lan Wang, Shi-Quan Dong, Hai-Long Hou, Wu-Gang Xiong, Li-Ze |
author_sort | Ma, Yu-Long |
collection | PubMed |
description | BACKGROUND: Because neuroprotective effects of estrogen remain controversial, we aimed to investigate the effect of different doses of estradiol (E2) on cerebral ischemia using both in vivo and in vitro experiments. RESULTS: PC12 cells were cultured at physiological (10 nM and 20 nM) or pharmacological (10 μM and 20 μM) dosages of E2 for 24 hours (h). The results of 5-bromodeoxyuridine (Brdu) incorporation and flow cytometric analysis showed that physiological doses of E2 enhanced cell proliferation and pharmacological doses of E2 inhibited cell proliferation. After the cells were exposed to oxygen and glucose deprivation (OGD) for 4 h and reperfusion for 20 h, the results of 3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, flow cytometric analysis and Western blot analysis showed that physiological doses of E2 enhanced cell viability, reduced cell apoptosis and decreased the expression of pro-apoptotic protein caspase-3. In contrast, pharmacological doses of E2 decreased cell viability and induced cell apoptosis. In vivo, adult ovariectomized (OVX) female rats received continuous subcutaneous injection of different doses of E2 for 4 weeks. Transient cerebral ischemia was induced for 2 h using the middle cerebral artery occlusion (MCAO) technique, followed by 22 h of reperfusion. The results of Garcia test, 2, 3, 5-triphenyltetrazolium chloride (TTC) staining showed that 6 μg/kg and 20 μg/kg E2 replacement induced an increase in neurological deficit scores, a decrease in the infarct volume and a reduction in the expression of caspase-3 when compared to animals in the OVX group without E2 treatment. However, 50 μg/kg E2 replacement treatment decreased neurological deficit scores, increased the infarct volume and the expression of caspase-3 when compared to animals in the control group and 6 up/kg or 20 μg/kg E2 replacement group. CONCLUSION: We conclude that physiological levels of E2 exhibit neuroprotective effects on cerebral ischemia; whereas, pharmacological or supraphysiological doses of E2 have damaging effects on neurons after cerebral ischemia. |
format | Online Article Text |
id | pubmed-3851874 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-38518742013-12-06 The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion Ma, Yu-Long Qin, Pei Li, Yan Shen, Lan Wang, Shi-Quan Dong, Hai-Long Hou, Wu-Gang Xiong, Li-Ze BMC Neurosci Research Article BACKGROUND: Because neuroprotective effects of estrogen remain controversial, we aimed to investigate the effect of different doses of estradiol (E2) on cerebral ischemia using both in vivo and in vitro experiments. RESULTS: PC12 cells were cultured at physiological (10 nM and 20 nM) or pharmacological (10 μM and 20 μM) dosages of E2 for 24 hours (h). The results of 5-bromodeoxyuridine (Brdu) incorporation and flow cytometric analysis showed that physiological doses of E2 enhanced cell proliferation and pharmacological doses of E2 inhibited cell proliferation. After the cells were exposed to oxygen and glucose deprivation (OGD) for 4 h and reperfusion for 20 h, the results of 3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, flow cytometric analysis and Western blot analysis showed that physiological doses of E2 enhanced cell viability, reduced cell apoptosis and decreased the expression of pro-apoptotic protein caspase-3. In contrast, pharmacological doses of E2 decreased cell viability and induced cell apoptosis. In vivo, adult ovariectomized (OVX) female rats received continuous subcutaneous injection of different doses of E2 for 4 weeks. Transient cerebral ischemia was induced for 2 h using the middle cerebral artery occlusion (MCAO) technique, followed by 22 h of reperfusion. The results of Garcia test, 2, 3, 5-triphenyltetrazolium chloride (TTC) staining showed that 6 μg/kg and 20 μg/kg E2 replacement induced an increase in neurological deficit scores, a decrease in the infarct volume and a reduction in the expression of caspase-3 when compared to animals in the OVX group without E2 treatment. However, 50 μg/kg E2 replacement treatment decreased neurological deficit scores, increased the infarct volume and the expression of caspase-3 when compared to animals in the control group and 6 up/kg or 20 μg/kg E2 replacement group. CONCLUSION: We conclude that physiological levels of E2 exhibit neuroprotective effects on cerebral ischemia; whereas, pharmacological or supraphysiological doses of E2 have damaging effects on neurons after cerebral ischemia. BioMed Central 2013-10-09 /pmc/articles/PMC3851874/ /pubmed/24106772 http://dx.doi.org/10.1186/1471-2202-14-118 Text en Copyright © 2013 Ma et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ma, Yu-Long Qin, Pei Li, Yan Shen, Lan Wang, Shi-Quan Dong, Hai-Long Hou, Wu-Gang Xiong, Li-Ze The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion |
title | The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion |
title_full | The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion |
title_fullStr | The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion |
title_full_unstemmed | The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion |
title_short | The effects of different doses of estradiol (E2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion |
title_sort | effects of different doses of estradiol (e2) on cerebral ischemia in an in vitro model of oxygen and glucose deprivation and reperfusion and in a rat model of middle carotid artery occlusion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851874/ https://www.ncbi.nlm.nih.gov/pubmed/24106772 http://dx.doi.org/10.1186/1471-2202-14-118 |
work_keys_str_mv | AT mayulong theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT qinpei theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT liyan theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT shenlan theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT wangshiquan theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT donghailong theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT houwugang theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT xionglize theeffectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT mayulong effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT qinpei effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT liyan effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT shenlan effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT wangshiquan effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT donghailong effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT houwugang effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion AT xionglize effectsofdifferentdosesofestradiole2oncerebralischemiainaninvitromodelofoxygenandglucosedeprivationandreperfusionandinaratmodelofmiddlecarotidarteryocclusion |