Cargando…

Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AβPP/PS1 transgenic mouse model

INTRODUCTION: Cell therapy is a potential therapeutic approach for neurodegenerative disorders, such as Alzheimer disease (AD). Neuronal differentiation of stem cells before transplantation is a promising procedure for cell therapy. However, the therapeutic impact and mechanisms of action of neuron-...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Hui, Xie, ZhaoHong, Wei, LiFei, Yang, HongNa, Yang, ShaoNan, Zhu, ZhengYu, Wang, Ping, Zhao, CuiPing, Bi, JianZhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854736/
https://www.ncbi.nlm.nih.gov/pubmed/23826983
http://dx.doi.org/10.1186/scrt227
Descripción
Sumario:INTRODUCTION: Cell therapy is a potential therapeutic approach for neurodegenerative disorders, such as Alzheimer disease (AD). Neuronal differentiation of stem cells before transplantation is a promising procedure for cell therapy. However, the therapeutic impact and mechanisms of action of neuron-like cells differentiated from human umbilical cord mesenchymal stem cells in AD have not been determined. METHODS: In this study, we used tricyclodecan-9-yl-xanthogenate (D609) to induce human mesenchymal stem cells isolated from Wharton jelly of the umbilical cord (HUMSCs) to differentiate into neuron-like cells (HUMSC-NCs), and transplanted the HUMSC-NCs into an AβPP/PS1 transgenic AD mouse model. The effects of HUMSC-NC transplantation on the cognitive function, synapsin I level, amyloid β-peptides (Aβ) deposition, and microglial function of the mice were investigated. RESULTS: We found that transplantation of HUMSC-NCs into AβPP/PS1 mice improved the cognitive function, increased synapsin I level, and significantly reduced Aβ deposition in the mice. The beneficial effects were associated with “alternatively activated” microglia (M2-like microglia). In the mice transplanted with HUMSC-NCs, M2-like microglial activation was significantly increased, and the expression of antiinflammatory cytokine associated with M2-like microglia, interleukin-4 (IL-4), was also increased, whereas the expression of proinflammatory cytokines associated with classic microglia (M1-like microglia), including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), was significantly reduced. Moreover, the expression of Aβ-degrading factors, insulin-degrading enzyme (IDE) and neprilysin (NEP), was increased substantially in the mice treated with HUMSC-NCs. CONCLUSIONS: HUMSC-NC transplantation decreased Aβ deposition and improved memory in AβPP/PS1 mice by a mechanism associated with activating M2-like microglia and modulating neuroinflammation. Transplantation of neuron-like cells differentiated from mesenchymal stem cells might be a promising cell therapy for Alzheimer disease.