Cargando…
Network-based stratification of tumor mutations
Many forms of cancer have multiple subtypes with different causes and clinical outcomes. Somatic tumor genome sequences provide a rich new source of data for uncovering these subtypes but have proven difficult to compare, as two tumors rarely share the same mutations. Here we introduce network-based...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866081/ https://www.ncbi.nlm.nih.gov/pubmed/24037242 http://dx.doi.org/10.1038/nmeth.2651 |
_version_ | 1782296106516873216 |
---|---|
author | Hofree, Matan Shen, John P Carter, Hannah Gross, Andrew Ideker, Trey |
author_facet | Hofree, Matan Shen, John P Carter, Hannah Gross, Andrew Ideker, Trey |
author_sort | Hofree, Matan |
collection | PubMed |
description | Many forms of cancer have multiple subtypes with different causes and clinical outcomes. Somatic tumor genome sequences provide a rich new source of data for uncovering these subtypes but have proven difficult to compare, as two tumors rarely share the same mutations. Here we introduce network-based stratification (NBS), a method to integrate somatic tumor genomes with gene networks. This approach allows for stratification of cancer into informative subtypes by clustering together patients with mutations in similar network regions. We demonstrate NBS in ovarian, uterine and lung cancer cohorts from The Cancer Genome Atlas. For each tissue, NBS identifies subtypes that are predictive of clinical outcomes such as patient survival, response to therapy or tumor histology. We identify network regions characteristic of each subtype and show how mutation-derived subtypes can be used to train an mRNA expression signature, which provides similar information in the absence of DNA sequence. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nmeth.2651) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-3866081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-38660812014-05-01 Network-based stratification of tumor mutations Hofree, Matan Shen, John P Carter, Hannah Gross, Andrew Ideker, Trey Nat Methods Article Many forms of cancer have multiple subtypes with different causes and clinical outcomes. Somatic tumor genome sequences provide a rich new source of data for uncovering these subtypes but have proven difficult to compare, as two tumors rarely share the same mutations. Here we introduce network-based stratification (NBS), a method to integrate somatic tumor genomes with gene networks. This approach allows for stratification of cancer into informative subtypes by clustering together patients with mutations in similar network regions. We demonstrate NBS in ovarian, uterine and lung cancer cohorts from The Cancer Genome Atlas. For each tissue, NBS identifies subtypes that are predictive of clinical outcomes such as patient survival, response to therapy or tumor histology. We identify network regions characteristic of each subtype and show how mutation-derived subtypes can be used to train an mRNA expression signature, which provides similar information in the absence of DNA sequence. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nmeth.2651) contains supplementary material, which is available to authorized users. Nature Publishing Group US 2013-09-15 2013 /pmc/articles/PMC3866081/ /pubmed/24037242 http://dx.doi.org/10.1038/nmeth.2651 Text en © The Author(s) 2013 This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/. |
spellingShingle | Article Hofree, Matan Shen, John P Carter, Hannah Gross, Andrew Ideker, Trey Network-based stratification of tumor mutations |
title | Network-based stratification of tumor mutations |
title_full | Network-based stratification of tumor mutations |
title_fullStr | Network-based stratification of tumor mutations |
title_full_unstemmed | Network-based stratification of tumor mutations |
title_short | Network-based stratification of tumor mutations |
title_sort | network-based stratification of tumor mutations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866081/ https://www.ncbi.nlm.nih.gov/pubmed/24037242 http://dx.doi.org/10.1038/nmeth.2651 |
work_keys_str_mv | AT hofreematan networkbasedstratificationoftumormutations AT shenjohnp networkbasedstratificationoftumormutations AT carterhannah networkbasedstratificationoftumormutations AT grossandrew networkbasedstratificationoftumormutations AT idekertrey networkbasedstratificationoftumormutations |