Cargando…
Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition
Prolyl-4-hydroxylation by the intracellular prolyl-4-hydroxylase enzymes (PHD1-3) serves as a master regulator of environmental oxygen sensing. The activity of these enzymes is tightly tied to tumorigenesis, as they regulate cell metabolism and angiogenesis through their control of hypoxia-inducible...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867438/ https://www.ncbi.nlm.nih.gov/pubmed/24367580 http://dx.doi.org/10.1371/journal.pone.0083021 |
_version_ | 1782296306305204224 |
---|---|
author | Place, Trenton L. Nauseef, Jones T. Peterson, Maina K. Henry, Michael D. Mezhir, James J. Domann, Frederick E. |
author_facet | Place, Trenton L. Nauseef, Jones T. Peterson, Maina K. Henry, Michael D. Mezhir, James J. Domann, Frederick E. |
author_sort | Place, Trenton L. |
collection | PubMed |
description | Prolyl-4-hydroxylation by the intracellular prolyl-4-hydroxylase enzymes (PHD1-3) serves as a master regulator of environmental oxygen sensing. The activity of these enzymes is tightly tied to tumorigenesis, as they regulate cell metabolism and angiogenesis through their control of hypoxia-inducible factor (HIF) stability. PHD3 specifically, is gaining attention for its broad function and rapidly accumulating array of non-HIF target proteins. Data from several recent studies suggest a role for PHD3 in the regulation of cell morphology and cell migration. In this study, we aimed to investigate this role by closely examining the relationship between PHD3 expression and epithelial-to-mesenchymal transition (EMT); a transcriptional program that plays a major role in controlling cell morphology and migratory capacity. Using human pancreatic ductal adenocarcinoma (PDA) cell lines and Madin-Darby Canine Kidney (MDCK) cells, we examined the correlation between several markers of EMT and PHD3 expression. We demonstrated that loss of PHD3 expression in PDA cell lines is highly correlated with a mesenchymal-like morphology and an increase in cell migratory capacity. We also found that induction of EMT in MDCK cells resulted in the specific downregulation of PHD3, whereas the expression of the other HIF-PHD enzymes was not affected. The results of this study clearly support a model by which the basal expression and hypoxic induction of PHD3 is suppressed by the EMT transcriptional program. This may be a novel mechanism by which migratory or metastasizing cells alter signaling through specific pathways that are sensitive to regulation by O(2). The identification of downstream pathways that are affected by the suppression of PHD3 expression during EMT may provide important insight into the crosstalk between O(2) and the migratory and metastatic potential of tumor cells. |
format | Online Article Text |
id | pubmed-3867438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38674382013-12-23 Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition Place, Trenton L. Nauseef, Jones T. Peterson, Maina K. Henry, Michael D. Mezhir, James J. Domann, Frederick E. PLoS One Research Article Prolyl-4-hydroxylation by the intracellular prolyl-4-hydroxylase enzymes (PHD1-3) serves as a master regulator of environmental oxygen sensing. The activity of these enzymes is tightly tied to tumorigenesis, as they regulate cell metabolism and angiogenesis through their control of hypoxia-inducible factor (HIF) stability. PHD3 specifically, is gaining attention for its broad function and rapidly accumulating array of non-HIF target proteins. Data from several recent studies suggest a role for PHD3 in the regulation of cell morphology and cell migration. In this study, we aimed to investigate this role by closely examining the relationship between PHD3 expression and epithelial-to-mesenchymal transition (EMT); a transcriptional program that plays a major role in controlling cell morphology and migratory capacity. Using human pancreatic ductal adenocarcinoma (PDA) cell lines and Madin-Darby Canine Kidney (MDCK) cells, we examined the correlation between several markers of EMT and PHD3 expression. We demonstrated that loss of PHD3 expression in PDA cell lines is highly correlated with a mesenchymal-like morphology and an increase in cell migratory capacity. We also found that induction of EMT in MDCK cells resulted in the specific downregulation of PHD3, whereas the expression of the other HIF-PHD enzymes was not affected. The results of this study clearly support a model by which the basal expression and hypoxic induction of PHD3 is suppressed by the EMT transcriptional program. This may be a novel mechanism by which migratory or metastasizing cells alter signaling through specific pathways that are sensitive to regulation by O(2). The identification of downstream pathways that are affected by the suppression of PHD3 expression during EMT may provide important insight into the crosstalk between O(2) and the migratory and metastatic potential of tumor cells. Public Library of Science 2013-12-18 /pmc/articles/PMC3867438/ /pubmed/24367580 http://dx.doi.org/10.1371/journal.pone.0083021 Text en © 2013 Place et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Place, Trenton L. Nauseef, Jones T. Peterson, Maina K. Henry, Michael D. Mezhir, James J. Domann, Frederick E. Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition |
title | Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition |
title_full | Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition |
title_fullStr | Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition |
title_full_unstemmed | Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition |
title_short | Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition |
title_sort | prolyl-4-hydroxylase 3 (phd3) expression is downregulated during epithelial-to-mesenchymal transition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867438/ https://www.ncbi.nlm.nih.gov/pubmed/24367580 http://dx.doi.org/10.1371/journal.pone.0083021 |
work_keys_str_mv | AT placetrentonl prolyl4hydroxylase3phd3expressionisdownregulatedduringepithelialtomesenchymaltransition AT nauseefjonest prolyl4hydroxylase3phd3expressionisdownregulatedduringepithelialtomesenchymaltransition AT petersonmainak prolyl4hydroxylase3phd3expressionisdownregulatedduringepithelialtomesenchymaltransition AT henrymichaeld prolyl4hydroxylase3phd3expressionisdownregulatedduringepithelialtomesenchymaltransition AT mezhirjamesj prolyl4hydroxylase3phd3expressionisdownregulatedduringepithelialtomesenchymaltransition AT domannfredericke prolyl4hydroxylase3phd3expressionisdownregulatedduringepithelialtomesenchymaltransition |