Cargando…
Predicting Drug–Target Interactions Using Probabilistic Matrix Factorization
[Image: see text] Quantitative analysis of known drug–target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly...
Autores principales: | Cobanoglu, Murat Can, Liu, Chang, Hu, Feizhuo, Oltvai, Zoltán N., Bahar, Ivet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2013
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3871285/ https://www.ncbi.nlm.nih.gov/pubmed/24289468 http://dx.doi.org/10.1021/ci400219z |
Ejemplares similares
-
BalestraWeb: efficient online evaluation of drug–target interactions
por: Cobanoglu, Murat Can, et al.
Publicado: (2015) -
Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding
por: Cheng, Mary Hongying, et al.
Publicado: (2015) -
Rhapsody: predicting the pathogenicity of human missense variants
por: Ponzoni, Luca, et al.
Publicado: (2020) -
Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies
por: Liu, Bing, et al.
Publicado: (2014) -
Predicting the Effects of Drug Combinations Using Probabilistic Matrix Factorization
por: Nafshi, Ron, et al.
Publicado: (2021)