Cargando…

Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species

Cancer cells have been found to express immunoglobulin G (IgG), but the exact functions and underlying mechanisms of cancer-derived IgG remain elusive. In this study, we first confirmed that downregulation of IgG restrained the growth and proliferation of cancer cells in vitro and in vivo. To elucid...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, J, Lin, D, Peng, H, Huang, Y, Huang, J, Gu, J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877547/
https://www.ncbi.nlm.nih.gov/pubmed/24309932
http://dx.doi.org/10.1038/cddis.2013.474
_version_ 1782297672555692032
author Wang, J
Lin, D
Peng, H
Huang, Y
Huang, J
Gu, J
author_facet Wang, J
Lin, D
Peng, H
Huang, Y
Huang, J
Gu, J
author_sort Wang, J
collection PubMed
description Cancer cells have been found to express immunoglobulin G (IgG), but the exact functions and underlying mechanisms of cancer-derived IgG remain elusive. In this study, we first confirmed that downregulation of IgG restrained the growth and proliferation of cancer cells in vitro and in vivo. To elucidate its mechanism, we carried out a co-immunoprecipitation assay in HeLa cells and identified 27 potential IgG-interacting proteins. Among them, receptor of activated protein kinase C 1 (RACK1), ras-related nuclear protein (RAN) and peroxiredoxin 1 (PRDX1) are closely related to cell growth and oxidative stress, which prompted us to investigate the mechanism of action of IgG in the above phenomena. Upon confirmation of the interactions between IgG and the three proteins, further experiments revealed that downregulation of cancer-derived IgG lowered levels of intracellular reactive oxygen species (ROS) by enhancing cellular total antioxidant capacity. In addition, a few ROS scavengers, including catalase (CAT), dimethylsulfoxide (DMSO), n-acetylcysteine (NAC) and superoxide dismutase (SOD), further inhibited the growth of IgG-deficient cancer cells through suppressing mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK) signaling pathway induced by a low level of intracellular ROS, whereas exogenous hydrogen peroxide (H(2)O(2)) at low concentration promoted their survival via increasing intracellular ROS levels. Similar results were obtained in an animal model and human tissues. Taken together, our results demonstrate that cancer-derived IgG can enhance the growth and proliferation of cancer cells via inducing the production of ROS at low level. These findings provide new clues for understanding tumor proliferation and designing cancer therapy.
format Online
Article
Text
id pubmed-3877547
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-38775472014-01-02 Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species Wang, J Lin, D Peng, H Huang, Y Huang, J Gu, J Cell Death Dis Original Article Cancer cells have been found to express immunoglobulin G (IgG), but the exact functions and underlying mechanisms of cancer-derived IgG remain elusive. In this study, we first confirmed that downregulation of IgG restrained the growth and proliferation of cancer cells in vitro and in vivo. To elucidate its mechanism, we carried out a co-immunoprecipitation assay in HeLa cells and identified 27 potential IgG-interacting proteins. Among them, receptor of activated protein kinase C 1 (RACK1), ras-related nuclear protein (RAN) and peroxiredoxin 1 (PRDX1) are closely related to cell growth and oxidative stress, which prompted us to investigate the mechanism of action of IgG in the above phenomena. Upon confirmation of the interactions between IgG and the three proteins, further experiments revealed that downregulation of cancer-derived IgG lowered levels of intracellular reactive oxygen species (ROS) by enhancing cellular total antioxidant capacity. In addition, a few ROS scavengers, including catalase (CAT), dimethylsulfoxide (DMSO), n-acetylcysteine (NAC) and superoxide dismutase (SOD), further inhibited the growth of IgG-deficient cancer cells through suppressing mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK) signaling pathway induced by a low level of intracellular ROS, whereas exogenous hydrogen peroxide (H(2)O(2)) at low concentration promoted their survival via increasing intracellular ROS levels. Similar results were obtained in an animal model and human tissues. Taken together, our results demonstrate that cancer-derived IgG can enhance the growth and proliferation of cancer cells via inducing the production of ROS at low level. These findings provide new clues for understanding tumor proliferation and designing cancer therapy. Nature Publishing Group 2013-12 2013-12-05 /pmc/articles/PMC3877547/ /pubmed/24309932 http://dx.doi.org/10.1038/cddis.2013.474 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Original Article
Wang, J
Lin, D
Peng, H
Huang, Y
Huang, J
Gu, J
Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species
title Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species
title_full Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species
title_fullStr Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species
title_full_unstemmed Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species
title_short Cancer-derived immunoglobulin G promotes tumor cell growth and proliferation through inducing production of reactive oxygen species
title_sort cancer-derived immunoglobulin g promotes tumor cell growth and proliferation through inducing production of reactive oxygen species
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877547/
https://www.ncbi.nlm.nih.gov/pubmed/24309932
http://dx.doi.org/10.1038/cddis.2013.474
work_keys_str_mv AT wangj cancerderivedimmunoglobulingpromotestumorcellgrowthandproliferationthroughinducingproductionofreactiveoxygenspecies
AT lind cancerderivedimmunoglobulingpromotestumorcellgrowthandproliferationthroughinducingproductionofreactiveoxygenspecies
AT pengh cancerderivedimmunoglobulingpromotestumorcellgrowthandproliferationthroughinducingproductionofreactiveoxygenspecies
AT huangy cancerderivedimmunoglobulingpromotestumorcellgrowthandproliferationthroughinducingproductionofreactiveoxygenspecies
AT huangj cancerderivedimmunoglobulingpromotestumorcellgrowthandproliferationthroughinducingproductionofreactiveoxygenspecies
AT guj cancerderivedimmunoglobulingpromotestumorcellgrowthandproliferationthroughinducingproductionofreactiveoxygenspecies