Cargando…
Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation
Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a m...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880288/ https://www.ncbi.nlm.nih.gov/pubmed/24404145 http://dx.doi.org/10.1371/journal.pone.0083962 |
_version_ | 1782298063658811392 |
---|---|
author | Tang, Lei van de Ven, Anne L. Guo, Dongmin Andasari, Vivi Cristini, Vittorio Li, King C. Zhou, Xiaobo |
author_facet | Tang, Lei van de Ven, Anne L. Guo, Dongmin Andasari, Vivi Cristini, Vittorio Li, King C. Zhou, Xiaobo |
author_sort | Tang, Lei |
collection | PubMed |
description | Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport, angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure. |
format | Online Article Text |
id | pubmed-3880288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38802882014-01-08 Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation Tang, Lei van de Ven, Anne L. Guo, Dongmin Andasari, Vivi Cristini, Vittorio Li, King C. Zhou, Xiaobo PLoS One Research Article Solid tumors develop abnormally at spatial and temporal scales, giving rise to biophysical barriers that impact anti-tumor chemotherapy. This may increase the expenditure and time for conventional drug pharmacokinetic and pharmacodynamic studies. In order to facilitate drug discovery, we propose a mathematical model that couples three-dimensional tumor growth and angiogenesis to simulate tumor progression for chemotherapy evaluation. This application-oriented model incorporates complex dynamical processes including cell- and vascular-mediated interstitial pressure, mass transport, angiogenesis, cell proliferation, and vessel maturation to model tumor progression through multiple stages including tumor initiation, avascular growth, and transition from avascular to vascular growth. Compared to pure mechanistic models, the proposed empirical methods are not only easy to conduct but can provide realistic predictions and calculations. A series of computational simulations were conducted to demonstrate the advantages of the proposed comprehensive model. The computational simulation results suggest that solid tumor geometry is related to the interstitial pressure, such that tumors with high interstitial pressure are more likely to develop dendritic structures than those with low interstitial pressure. Public Library of Science 2014-01-03 /pmc/articles/PMC3880288/ /pubmed/24404145 http://dx.doi.org/10.1371/journal.pone.0083962 Text en © 2014 Tang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Tang, Lei van de Ven, Anne L. Guo, Dongmin Andasari, Vivi Cristini, Vittorio Li, King C. Zhou, Xiaobo Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation |
title | Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation |
title_full | Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation |
title_fullStr | Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation |
title_full_unstemmed | Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation |
title_short | Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation |
title_sort | computational modeling of 3d tumor growth and angiogenesis for chemotherapy evaluation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880288/ https://www.ncbi.nlm.nih.gov/pubmed/24404145 http://dx.doi.org/10.1371/journal.pone.0083962 |
work_keys_str_mv | AT tanglei computationalmodelingof3dtumorgrowthandangiogenesisforchemotherapyevaluation AT vandevenannel computationalmodelingof3dtumorgrowthandangiogenesisforchemotherapyevaluation AT guodongmin computationalmodelingof3dtumorgrowthandangiogenesisforchemotherapyevaluation AT andasarivivi computationalmodelingof3dtumorgrowthandangiogenesisforchemotherapyevaluation AT cristinivittorio computationalmodelingof3dtumorgrowthandangiogenesisforchemotherapyevaluation AT likingc computationalmodelingof3dtumorgrowthandangiogenesisforchemotherapyevaluation AT zhouxiaobo computationalmodelingof3dtumorgrowthandangiogenesisforchemotherapyevaluation |