Cargando…
Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application
BACKGROUND: Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR‐145 and miR‐143 because of their signi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886745/ https://www.ncbi.nlm.nih.gov/pubmed/24166492 http://dx.doi.org/10.1161/JAHA.113.000407 |
_version_ | 1782478915086843904 |
---|---|
author | Liu, Xiaojun Cheng, Yunhui Yang, Jian Qin, Shanshan Chen, Xiuwei Tang, Xiaojun Zhou, Xiangyu Krall, Thomas J. Zhang, Chunxiang |
author_facet | Liu, Xiaojun Cheng, Yunhui Yang, Jian Qin, Shanshan Chen, Xiuwei Tang, Xiaojun Zhou, Xiangyu Krall, Thomas J. Zhang, Chunxiang |
author_sort | Liu, Xiaojun |
collection | PubMed |
description | BACKGROUND: Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR‐145 and miR‐143 because of their significant downregulation by the unclear endogenous mechanisms under disease conditions. The purpose of this study was to determine the molecular mechanisms responsible for their downregulation and to overcome the therapeutic barrier. METHODS AND RESULTS: In cultured proliferative rat vascular smooth muscle cells (VSMCs) in vitro and in diseased rat and mouse arteries in vivo, we have identified that the impairment of pri‐miR‐145 into pre‐miR‐145 is the critical step related to the downregulation of miR‐145, in which the PI3‐kinase/Akt/p53 pathway is involved. We further identified that the flank sequences of pri‐miR‐145 are the critical structural components responsible for the aberrant miR‐145 expression. Switching of the flank sequence of downregulated miR‐145 and miR‐143 to the flank sequence of miR‐31 confers resistance to their downregulation. The genetically engineered miR‐145 (smart miR‐145) restored the downregulated miR‐145 in proliferative rat VSMCs and in rat carotid arteries with balloon injury and mouse atherosclerotic aortas and demonstrated much better therapeutic effects on the abnormal growth of VSMCs, expression of its target gene, KLF5 expression, VSMC marker gene expression, and vascular neointimal growth. CONCLUSIONS: The flank sequences of miR‐145 and miR‐143 play a critical role in their aberrant expression in VSMCs and vascular walls. The genetically engineered “smart” miRNAs based on their flank sequences may have broadly therapeutic applications for many vascular diseases. |
format | Online Article Text |
id | pubmed-3886745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-38867452014-01-10 Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application Liu, Xiaojun Cheng, Yunhui Yang, Jian Qin, Shanshan Chen, Xiuwei Tang, Xiaojun Zhou, Xiangyu Krall, Thomas J. Zhang, Chunxiang J Am Heart Assoc Original Research BACKGROUND: Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR‐145 and miR‐143 because of their significant downregulation by the unclear endogenous mechanisms under disease conditions. The purpose of this study was to determine the molecular mechanisms responsible for their downregulation and to overcome the therapeutic barrier. METHODS AND RESULTS: In cultured proliferative rat vascular smooth muscle cells (VSMCs) in vitro and in diseased rat and mouse arteries in vivo, we have identified that the impairment of pri‐miR‐145 into pre‐miR‐145 is the critical step related to the downregulation of miR‐145, in which the PI3‐kinase/Akt/p53 pathway is involved. We further identified that the flank sequences of pri‐miR‐145 are the critical structural components responsible for the aberrant miR‐145 expression. Switching of the flank sequence of downregulated miR‐145 and miR‐143 to the flank sequence of miR‐31 confers resistance to their downregulation. The genetically engineered miR‐145 (smart miR‐145) restored the downregulated miR‐145 in proliferative rat VSMCs and in rat carotid arteries with balloon injury and mouse atherosclerotic aortas and demonstrated much better therapeutic effects on the abnormal growth of VSMCs, expression of its target gene, KLF5 expression, VSMC marker gene expression, and vascular neointimal growth. CONCLUSIONS: The flank sequences of miR‐145 and miR‐143 play a critical role in their aberrant expression in VSMCs and vascular walls. The genetically engineered “smart” miRNAs based on their flank sequences may have broadly therapeutic applications for many vascular diseases. Blackwell Publishing Ltd 2013-12-19 /pmc/articles/PMC3886745/ /pubmed/24166492 http://dx.doi.org/10.1161/JAHA.113.000407 Text en © 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial (http://creativecommons.org/licenses/by-nc/3.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Research Liu, Xiaojun Cheng, Yunhui Yang, Jian Qin, Shanshan Chen, Xiuwei Tang, Xiaojun Zhou, Xiangyu Krall, Thomas J. Zhang, Chunxiang Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application |
title | Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application |
title_full | Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application |
title_fullStr | Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application |
title_full_unstemmed | Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application |
title_short | Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application |
title_sort | flank sequences of mir‐145/143 and their aberrant expression in vascular disease: mechanism and therapeutic application |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886745/ https://www.ncbi.nlm.nih.gov/pubmed/24166492 http://dx.doi.org/10.1161/JAHA.113.000407 |
work_keys_str_mv | AT liuxiaojun flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT chengyunhui flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT yangjian flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT qinshanshan flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT chenxiuwei flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT tangxiaojun flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT zhouxiangyu flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT krallthomasj flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication AT zhangchunxiang flanksequencesofmir145143andtheiraberrantexpressioninvasculardiseasemechanismandtherapeuticapplication |