Cargando…
Generalized Linear Mixed Models for Binary Data: Are Matching Results from Penalized Quasi-Likelihood and Numerical Integration Less Biased?
BACKGROUND: Over time, adaptive Gaussian Hermite quadrature (QUAD) has become the preferred method for estimating generalized linear mixed models with binary outcomes. However, penalized quasi-likelihood (PQL) is still used frequently. In this work, we systematically evaluated whether matching resul...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886992/ https://www.ncbi.nlm.nih.gov/pubmed/24416249 http://dx.doi.org/10.1371/journal.pone.0084601 |