Cargando…
Generalized Linear Mixed Models for Binary Data: Are Matching Results from Penalized Quasi-Likelihood and Numerical Integration Less Biased?
BACKGROUND: Over time, adaptive Gaussian Hermite quadrature (QUAD) has become the preferred method for estimating generalized linear mixed models with binary outcomes. However, penalized quasi-likelihood (PQL) is still used frequently. In this work, we systematically evaluated whether matching resul...
Autores principales: | Benedetti, Andrea, Platt, Robert, Atherton, Juli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886992/ https://www.ncbi.nlm.nih.gov/pubmed/24416249 http://dx.doi.org/10.1371/journal.pone.0084601 |
Ejemplares similares
-
Laplace approximation, penalized quasi-likelihood, and adaptive Gauss–Hermite quadrature for generalized linear mixed models: towards meta-analysis of binary outcome with sparse data
por: Ju, Ke, et al.
Publicado: (2020) -
A marginal quasi-likelihood approach to the analysis of Poisson variables with generalized linear mixed models
por: Foulley, JL, et al.
Publicado: (1993) -
Maximum Penalized Likelihood Estimation
por: LaRiccia, Vincent N, et al.
Publicado: (2009) -
LASSO type penalized spline regression for binary data
por: Mullah, Muhammad Abu Shadeque, et al.
Publicado: (2021) -
Maximum penalized likelihood estimation of interspike interval distribution
por: Pokora, Ondrej, et al.
Publicado: (2013)