Cargando…

Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression

In the field of cancer biology, numerous genes or proteins form extremely complex regulatory network, which determines cancer cell fate and cancer cell survival. p53 is a major tumor suppressor that is lost in more than 50% of human cancers. It has been well known that a variety of proteins regulate...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hua, Peng, Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888710/
https://www.ncbi.nlm.nih.gov/pubmed/24454532
http://dx.doi.org/10.1155/2013/358980
_version_ 1782299101326475264
author Wang, Hua
Peng, Guang
author_facet Wang, Hua
Peng, Guang
author_sort Wang, Hua
collection PubMed
description In the field of cancer biology, numerous genes or proteins form extremely complex regulatory network, which determines cancer cell fate and cancer cell survival. p53 is a major tumor suppressor that is lost in more than 50% of human cancers. It has been well known that a variety of proteins regulate its protein stability, which is essential for its tumor suppressive function. It remains elusive how we could understand and target p53 stabilization process through network analysis. In this paper we discuss the use of random walk and stationary distribution to measure the compound effect of a network of genes or proteins. This method is applied to the network of nine proteins that influence the protein stability of p53 via regulating the interaction between p53 and its regulator MDM2. Our study identifies that some proteins such as HDAC1 in the network of p53 regulators may have more profound effects on p53 stability, agreeing with the established findings on HDAC1. This work shows the importance of using mathematical analysis to dissect the complexity of biology networks in cancer.
format Online
Article
Text
id pubmed-3888710
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-38887102014-01-22 Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression Wang, Hua Peng, Guang Comput Math Methods Med Research Article In the field of cancer biology, numerous genes or proteins form extremely complex regulatory network, which determines cancer cell fate and cancer cell survival. p53 is a major tumor suppressor that is lost in more than 50% of human cancers. It has been well known that a variety of proteins regulate its protein stability, which is essential for its tumor suppressive function. It remains elusive how we could understand and target p53 stabilization process through network analysis. In this paper we discuss the use of random walk and stationary distribution to measure the compound effect of a network of genes or proteins. This method is applied to the network of nine proteins that influence the protein stability of p53 via regulating the interaction between p53 and its regulator MDM2. Our study identifies that some proteins such as HDAC1 in the network of p53 regulators may have more profound effects on p53 stability, agreeing with the established findings on HDAC1. This work shows the importance of using mathematical analysis to dissect the complexity of biology networks in cancer. Hindawi Publishing Corporation 2013 2013-12-28 /pmc/articles/PMC3888710/ /pubmed/24454532 http://dx.doi.org/10.1155/2013/358980 Text en Copyright © 2013 H. Wang and G. Peng. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Hua
Peng, Guang
Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression
title Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression
title_full Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression
title_fullStr Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression
title_full_unstemmed Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression
title_short Mathematical Model of Dynamic Protein Interactions Regulating p53 Protein Stability for Tumor Suppression
title_sort mathematical model of dynamic protein interactions regulating p53 protein stability for tumor suppression
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888710/
https://www.ncbi.nlm.nih.gov/pubmed/24454532
http://dx.doi.org/10.1155/2013/358980
work_keys_str_mv AT wanghua mathematicalmodelofdynamicproteininteractionsregulatingp53proteinstabilityfortumorsuppression
AT pengguang mathematicalmodelofdynamicproteininteractionsregulatingp53proteinstabilityfortumorsuppression