Cargando…

Immunogenic, but Not Steady-State, Antigen Presentation Permits Regulatory T-Cells To Control CD8+ T-Cell Effector Differentiation by IL-2 Modulation

Absorption of IL-2 is one proposed mechanism of CD4+CD25+FoxP3+ regulatory T cell (Treg) suppression. Direct in vivo experimental evidence for this has recently been obtained. While modulation of IL-2 bioavailability controls CD8+ T-cell effector differentiation under strongly immunogenic conditions...

Descripción completa

Detalles Bibliográficos
Autores principales: McNally, Alice, McNally, Michael, Galea, Ryan, Thomas, Ranjeny, Steptoe, Raymond J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890313/
https://www.ncbi.nlm.nih.gov/pubmed/24454872
http://dx.doi.org/10.1371/journal.pone.0085455
Descripción
Sumario:Absorption of IL-2 is one proposed mechanism of CD4+CD25+FoxP3+ regulatory T cell (Treg) suppression. Direct in vivo experimental evidence for this has recently been obtained. While modulation of IL-2 bioavailability controls CD8+ T-cell effector differentiation under strongly immunogenic conditions it is not known whether Treg modulate CD8+ T cell responses through this mechanism under steady-state conditions. Here we assess this using a mouse model in which dendritic cells (DC) are manipulated to present cognate antigen to CD8+ T cells either in the steady-state or after activation. Our observations show that Treg exert a check on expansion and effector differentiation of CD8+ T cells under strongly immunogenic conditions associated with TLR ligand activation of DC, and this is mediated by limiting IL-2 availability. In contrast, when DC remain unactivated, depletion of Treg has little apparent effect on effector differentiation or IL-2 homeostasis. We conclude that while modulation of IL-2 homeostasis is an important mechanism through which Treg control CD8+ effector differentiation under immunogenic conditions, this mechanism plays little role in modulating CD8+ T-cell differentiation under steady-state conditions.