Cargando…

C/EBPα: critical at the origin of leukemic transformation

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by clonal expansion of myeloid progenitor cells. A major mechanistic theme in AML biology is the extensive collaboration among fusion oncoproteins, transcription factors, and chromatin regulators to initiate and sustain a trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Roe, Jae-Seok, Vakoc, Christopher R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892974/
https://www.ncbi.nlm.nih.gov/pubmed/24395889
http://dx.doi.org/10.1084/jem.20132530
Descripción
Sumario:Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by clonal expansion of myeloid progenitor cells. A major mechanistic theme in AML biology is the extensive collaboration among fusion oncoproteins, transcription factors, and chromatin regulators to initiate and sustain a transformed cellular state. A new study in this issue describes how the C/EBPα transcription factor is crucial for the initiation of AML induced by MLL fusion oncoproteins, but is entirely dispensable for the maintenance of established disease. These observations provide a unique glimpse into the pioneer round of regulatory events that are critical at the origin of AML formation. Furthermore, this study implies the existence of oncogene-induced positive feedback loops capable of bypassing the continuous need for certain regulators to propagate disease.