Cargando…
Computationally designed libraries for rapid enzyme stabilization
The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants o...
Autores principales: | Wijma, Hein J., Floor, Robert J., Jekel, Peter A., Baker, David, Marrink, Siewert J., Janssen, Dick B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893934/ https://www.ncbi.nlm.nih.gov/pubmed/24402331 http://dx.doi.org/10.1093/protein/gzt061 |
Ejemplares similares
-
Computational Prediction of ω-Transaminase
Specificity by a Combination of Docking and Molecular Dynamics Simulations
por: Ramírez-Palacios, Carlos, et al.
Publicado: (2021) -
Computational Design of Enantiocomplementary Epoxide Hydrolases for Asymmetric Synthesis of Aliphatic and Aromatic Diols
por: Arabnejad, Hesam, et al.
Publicado: (2020) -
Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue
por: van Beek, Hugo L., et al.
Publicado: (2014) -
Computational Redesign of an ω-Transaminase
from Pseudomonas jessenii for Asymmetric
Synthesis of Enantiopure Bulky Amines
por: Meng, Qinglong, et al.
Publicado: (2021) -
Creating a more robust 5-hydroxymethylfurfural oxidase by combining computational predictions with a novel effective library design
por: Martin, Caterina, et al.
Publicado: (2018)