Cargando…

The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation

We show that the splicing regulator PTBP2 controls a genetic program essential for neuronal maturation. Depletion of PTBP2 in developing mouse cortex leads to degeneration of these tissues over the first three postnatal weeks, a time when the normal cortex expands and develops mature circuits. Cultu...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qin, Zheng, Sika, Han, Areum, Lin, Chia-Ho, Stoilov, Peter, Fu, Xiang-Dong, Black, Douglas L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896118/
https://www.ncbi.nlm.nih.gov/pubmed/24448406
http://dx.doi.org/10.7554/eLife.01201
Descripción
Sumario:We show that the splicing regulator PTBP2 controls a genetic program essential for neuronal maturation. Depletion of PTBP2 in developing mouse cortex leads to degeneration of these tissues over the first three postnatal weeks, a time when the normal cortex expands and develops mature circuits. Cultured Ptbp2(−/−) neurons exhibit the same initial viability as wild type, with proper neurite outgrowth and marker expression. However, these mutant cells subsequently fail to mature and die after a week in culture. Transcriptome-wide analyses identify many exons that share a pattern of mis-regulation in the mutant brains, where isoforms normally found in adults are precociously expressed in the developing embryo. These transcripts encode proteins affecting neurite growth, pre- and post-synaptic assembly, and synaptic transmission. Our results define a new genetic regulatory program, where PTBP2 acts to temporarily repress expression of adult protein isoforms until the final maturation of the neuron. DOI: http://dx.doi.org/10.7554/eLife.01201.001