Cargando…
Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations
Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylati...
Autores principales: | Guadalupe-Medina, Víctor, Metz, Benjamin, Oud, Bart, van Der Graaf, Charlotte M, Mans, Robert, Pronk, Jack T, van Maris, Antonius J A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896938/ https://www.ncbi.nlm.nih.gov/pubmed/24004455 http://dx.doi.org/10.1111/1751-7915.12080 |
Ejemplares similares
-
Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6
por: Papapetridis, Ioannis, et al.
Publicado: (2016) -
Optimizing the balance between heterologous acetate- and CO(2)-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production
por: van Aalst, Aafke C A, et al.
Publicado: (2023) -
Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae
por: Papapetridis, Ioannis, et al.
Publicado: (2017) -
Reassessment of requirements for anaerobic xylose fermentation by engineered, non-evolved Saccharomyces cerevisiae strains
por: Bracher, Jasmine M, et al.
Publicado: (2018) -
An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
por: Oud, Bart, et al.
Publicado: (2012)