Cargando…
Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth
Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897655/ https://www.ncbi.nlm.nih.gov/pubmed/24465953 http://dx.doi.org/10.1371/journal.pone.0086195 |
_version_ | 1782300276421558272 |
---|---|
author | Zhou, Haixia Ge, Yue Sun, Lili Ma, Wenjuan Wu, Jie Zhang, Xiuyan Hu, Xiaohui Eaves, Connie J. Wu, Depei Zhao, Yun |
author_facet | Zhou, Haixia Ge, Yue Sun, Lili Ma, Wenjuan Wu, Jie Zhang, Xiuyan Hu, Xiaohui Eaves, Connie J. Wu, Depei Zhao, Yun |
author_sort | Zhou, Haixia |
collection | PubMed |
description | Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34(+) progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34(+) cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34(+) transduced (YFP(+)) progeny cells (CD34(+)YFP(+)) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease. |
format | Online Article Text |
id | pubmed-3897655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-38976552014-01-24 Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth Zhou, Haixia Ge, Yue Sun, Lili Ma, Wenjuan Wu, Jie Zhang, Xiuyan Hu, Xiaohui Eaves, Connie J. Wu, Depei Zhao, Yun PLoS One Research Article Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34(+) progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34(+) cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34(+) transduced (YFP(+)) progeny cells (CD34(+)YFP(+)) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease. Public Library of Science 2014-01-21 /pmc/articles/PMC3897655/ /pubmed/24465953 http://dx.doi.org/10.1371/journal.pone.0086195 Text en © 2014 Zhou et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhou, Haixia Ge, Yue Sun, Lili Ma, Wenjuan Wu, Jie Zhang, Xiuyan Hu, Xiaohui Eaves, Connie J. Wu, Depei Zhao, Yun Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth |
title | Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth |
title_full | Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth |
title_fullStr | Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth |
title_full_unstemmed | Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth |
title_short | Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth |
title_sort | growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897655/ https://www.ncbi.nlm.nih.gov/pubmed/24465953 http://dx.doi.org/10.1371/journal.pone.0086195 |
work_keys_str_mv | AT zhouhaixia growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT geyue growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT sunlili growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT mawenjuan growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT wujie growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT zhangxiuyan growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT huxiaohui growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT eavesconniej growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT wudepei growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth AT zhaoyun growtharrestspecific2isupregulatedinchronicmyeloidleukemiacellsandrequiredfortheirgrowth |