Cargando…

Iron metabolism: current facts and future directions

Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ o...

Descripción completa

Detalles Bibliográficos
Autores principales: Tandara, Leida, Salamunic, Ilza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Croatian Society of Medical Biochemistry and Laboratory Medicine 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900049/
https://www.ncbi.nlm.nih.gov/pubmed/23092063
Descripción
Sumario:Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin.