Cargando…
Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism
Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900632/ https://www.ncbi.nlm.nih.gov/pubmed/24465208 http://dx.doi.org/10.1371/journal.ppat.1003888 |
_version_ | 1782300726199844864 |
---|---|
author | Saunders, Eleanor C. Ng, William W. Kloehn, Joachim Chambers, Jennifer M. Ng, Milica McConville, Malcolm J. |
author_facet | Saunders, Eleanor C. Ng, William W. Kloehn, Joachim Chambers, Jennifer M. Ng, Milica McConville, Malcolm J. |
author_sort | Saunders, Eleanor C. |
collection | PubMed |
description | Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13)C-stable isotope resolved metabolomics and (2)H(2)O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate) and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA) cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism. |
format | Online Article Text |
id | pubmed-3900632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39006322014-01-24 Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism Saunders, Eleanor C. Ng, William W. Kloehn, Joachim Chambers, Jennifer M. Ng, Milica McConville, Malcolm J. PLoS Pathog Research Article Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13)C-stable isotope resolved metabolomics and (2)H(2)O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate) and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA) cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism. Public Library of Science 2014-01-23 /pmc/articles/PMC3900632/ /pubmed/24465208 http://dx.doi.org/10.1371/journal.ppat.1003888 Text en © 2014 Saunders et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Saunders, Eleanor C. Ng, William W. Kloehn, Joachim Chambers, Jennifer M. Ng, Milica McConville, Malcolm J. Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism |
title | Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism |
title_full | Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism |
title_fullStr | Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism |
title_full_unstemmed | Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism |
title_short | Induction of a Stringent Metabolic Response in Intracellular Stages of Leishmania mexicana Leads to Increased Dependence on Mitochondrial Metabolism |
title_sort | induction of a stringent metabolic response in intracellular stages of leishmania mexicana leads to increased dependence on mitochondrial metabolism |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900632/ https://www.ncbi.nlm.nih.gov/pubmed/24465208 http://dx.doi.org/10.1371/journal.ppat.1003888 |
work_keys_str_mv | AT saunderseleanorc inductionofastringentmetabolicresponseinintracellularstagesofleishmaniamexicanaleadstoincreaseddependenceonmitochondrialmetabolism AT ngwilliamw inductionofastringentmetabolicresponseinintracellularstagesofleishmaniamexicanaleadstoincreaseddependenceonmitochondrialmetabolism AT kloehnjoachim inductionofastringentmetabolicresponseinintracellularstagesofleishmaniamexicanaleadstoincreaseddependenceonmitochondrialmetabolism AT chambersjenniferm inductionofastringentmetabolicresponseinintracellularstagesofleishmaniamexicanaleadstoincreaseddependenceonmitochondrialmetabolism AT ngmilica inductionofastringentmetabolicresponseinintracellularstagesofleishmaniamexicanaleadstoincreaseddependenceonmitochondrialmetabolism AT mcconvillemalcolmj inductionofastringentmetabolicresponseinintracellularstagesofleishmaniamexicanaleadstoincreaseddependenceonmitochondrialmetabolism |