Cargando…

A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles

Cells produce electrophilic products with the potential to modify and affect the function of proteins. Chemoproteomic methods have provided a means to qualitatively inventory proteins targeted by endogenous electrophiles; however, ascertaining the potency and specificity of these reactions to identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chu, Weerapana, Eranthie, Blewett, Megan, Cravatt, Benjamin F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901407/
https://www.ncbi.nlm.nih.gov/pubmed/24292485
http://dx.doi.org/10.1038/nmeth.2759
Descripción
Sumario:Cells produce electrophilic products with the potential to modify and affect the function of proteins. Chemoproteomic methods have provided a means to qualitatively inventory proteins targeted by endogenous electrophiles; however, ascertaining the potency and specificity of these reactions to identify the most sensitive sites in the proteome to electrophilic modification requires more quantitative methods. Here, we describe a competitive activity-based profiling method for quantifying the reactivity of electrophilic compounds against 1000+ cysteines in parallel in the human proteome. Using this approach, we identify a select set of proteins that constitute “hot spots” for modification by various lipid-derived electrophiles, including the oxidative stress product 4-hydroxynonenal (HNE). We show that one of these proteins, ZAK kinase, is labeled by HNE on a conserved, active site-proximal cysteine, resulting in enzyme inhibition to create a negative feedback mechanism that can suppress the activation of JNK pathways by oxidative stress.