Cargando…

Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome

Brugada syndrome (BrS) is an inheritable sudden cardiac death disease mainly caused by SCN5A mutations. Traditional approaches can be costly and time-consuming if all candidate variants need to be validated through in vitro studies. Therefore, we developed a new approach by combining multiple in sil...

Descripción completa

Detalles Bibliográficos
Autores principales: Juang, Jyh-Ming Jimmy, Lu, Tzu-Pin, Lai, Liang-Chuan, Hsueh, Chia-Hsiang, Liu, Yen-Bin, Tsai, Chia-Ti, Lin, Lian-Yu, Yu, Chih-Chieh, Hwang, Juey-Jen, Chiang, Fu-Tien, Yeh, Sherri Shih-Fan, Chen, Wen-Pin, Chuang, Eric Y., Lai, Ling-Ping, Lin, Jiunn-Lee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902491/
https://www.ncbi.nlm.nih.gov/pubmed/24463578
http://dx.doi.org/10.1038/srep03850
_version_ 1782300992300122112
author Juang, Jyh-Ming Jimmy
Lu, Tzu-Pin
Lai, Liang-Chuan
Hsueh, Chia-Hsiang
Liu, Yen-Bin
Tsai, Chia-Ti
Lin, Lian-Yu
Yu, Chih-Chieh
Hwang, Juey-Jen
Chiang, Fu-Tien
Yeh, Sherri Shih-Fan
Chen, Wen-Pin
Chuang, Eric Y.
Lai, Ling-Ping
Lin, Jiunn-Lee
author_facet Juang, Jyh-Ming Jimmy
Lu, Tzu-Pin
Lai, Liang-Chuan
Hsueh, Chia-Hsiang
Liu, Yen-Bin
Tsai, Chia-Ti
Lin, Lian-Yu
Yu, Chih-Chieh
Hwang, Juey-Jen
Chiang, Fu-Tien
Yeh, Sherri Shih-Fan
Chen, Wen-Pin
Chuang, Eric Y.
Lai, Ling-Ping
Lin, Jiunn-Lee
author_sort Juang, Jyh-Ming Jimmy
collection PubMed
description Brugada syndrome (BrS) is an inheritable sudden cardiac death disease mainly caused by SCN5A mutations. Traditional approaches can be costly and time-consuming if all candidate variants need to be validated through in vitro studies. Therefore, we developed a new approach by combining multiple in silico analyses to predict functional and structural changes of candidate SCN5A variants in BrS before conducting in vitro studies. Five SCN5A non-synonymous variants (1651G>A, 1776C>G, 1673A>G, 3269C>T and 3578G>A) were identified in 14 BrS patients using direct DNA sequencing. Several bioinformatics algorithms were applied and predicted that 1651G>A (A551T) and 1776C>G (N592K) were high-risk SCN5A variants (odds ratio 59.59 and 23.93). The results were validated by Mass spectrometry and in vitro electrophysiological assays. We concluded that integrating sequence-based information and secondary protein structures elements may help select highly potential variants in BrS before conducting time-consuming electrophysiological studies and two novel SCN5A mutations were validated.
format Online
Article
Text
id pubmed-3902491
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-39024912014-01-27 Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome Juang, Jyh-Ming Jimmy Lu, Tzu-Pin Lai, Liang-Chuan Hsueh, Chia-Hsiang Liu, Yen-Bin Tsai, Chia-Ti Lin, Lian-Yu Yu, Chih-Chieh Hwang, Juey-Jen Chiang, Fu-Tien Yeh, Sherri Shih-Fan Chen, Wen-Pin Chuang, Eric Y. Lai, Ling-Ping Lin, Jiunn-Lee Sci Rep Article Brugada syndrome (BrS) is an inheritable sudden cardiac death disease mainly caused by SCN5A mutations. Traditional approaches can be costly and time-consuming if all candidate variants need to be validated through in vitro studies. Therefore, we developed a new approach by combining multiple in silico analyses to predict functional and structural changes of candidate SCN5A variants in BrS before conducting in vitro studies. Five SCN5A non-synonymous variants (1651G>A, 1776C>G, 1673A>G, 3269C>T and 3578G>A) were identified in 14 BrS patients using direct DNA sequencing. Several bioinformatics algorithms were applied and predicted that 1651G>A (A551T) and 1776C>G (N592K) were high-risk SCN5A variants (odds ratio 59.59 and 23.93). The results were validated by Mass spectrometry and in vitro electrophysiological assays. We concluded that integrating sequence-based information and secondary protein structures elements may help select highly potential variants in BrS before conducting time-consuming electrophysiological studies and two novel SCN5A mutations were validated. Nature Publishing Group 2014-01-27 /pmc/articles/PMC3902491/ /pubmed/24463578 http://dx.doi.org/10.1038/srep03850 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Juang, Jyh-Ming Jimmy
Lu, Tzu-Pin
Lai, Liang-Chuan
Hsueh, Chia-Hsiang
Liu, Yen-Bin
Tsai, Chia-Ti
Lin, Lian-Yu
Yu, Chih-Chieh
Hwang, Juey-Jen
Chiang, Fu-Tien
Yeh, Sherri Shih-Fan
Chen, Wen-Pin
Chuang, Eric Y.
Lai, Ling-Ping
Lin, Jiunn-Lee
Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome
title Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome
title_full Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome
title_fullStr Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome
title_full_unstemmed Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome
title_short Utilizing Multiple in Silico Analyses to Identify Putative Causal SCN5A Variants in Brugada Syndrome
title_sort utilizing multiple in silico analyses to identify putative causal scn5a variants in brugada syndrome
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902491/
https://www.ncbi.nlm.nih.gov/pubmed/24463578
http://dx.doi.org/10.1038/srep03850
work_keys_str_mv AT juangjyhmingjimmy utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT lutzupin utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT lailiangchuan utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT hsuehchiahsiang utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT liuyenbin utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT tsaichiati utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT linlianyu utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT yuchihchieh utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT hwangjueyjen utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT chiangfutien utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT yehsherrishihfan utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT chenwenpin utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT chuangericy utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT lailingping utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome
AT linjiunnlee utilizingmultipleinsilicoanalysestoidentifyputativecausalscn5avariantsinbrugadasyndrome