Cargando…
New Aspects of HERG K(+) Channel Function Depending upon Cardiac Spatial Heterogeneity
HERG K(+) channel, the genetic counterpart of rapid delayed rectifier K(+) current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+) channels. While the conventional pulse protoco...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903466/ https://www.ncbi.nlm.nih.gov/pubmed/24475014 http://dx.doi.org/10.1371/journal.pone.0072181 |
Sumario: | HERG K(+) channel, the genetic counterpart of rapid delayed rectifier K(+) current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+) channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp I(HERG) increased gradually with membrane repolarization, peaked at potentials around 20–30 mV more negative than revealed by pulse protocols and at action potential duration (APD) to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of I(HERG) was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of I(HERG) when quantified with the area covered by I(HERG) trace. In addition, we observed regional and transmural differences of I(HERG) in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis. |
---|