Cargando…
In vitro optimization of 2′-OMe-4′-thioribonucleoside–modified anti-microRNA oligonucleotides and its targeting delivery to mouse liver using a liposomal nanoparticle
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. Previous studies, which characterized miRNA function, revealed their involvement in fundamental biological processes. Importantly, miRNA expression is deregulated in many human diseases. Specific inhibi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905841/ https://www.ncbi.nlm.nih.gov/pubmed/24030710 http://dx.doi.org/10.1093/nar/gkt823 |
Sumario: | MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. Previous studies, which characterized miRNA function, revealed their involvement in fundamental biological processes. Importantly, miRNA expression is deregulated in many human diseases. Specific inhibition of miRNAs using chemically modified anti-miRNA oligonucleotides (AMOs) can be a potential therapeutic strategy for diseases in which a specific miRNA is overexpressed. 2′-O-Methyl (2′-OMe)-4′-thioRNA is a hybrid type of chemically modified oligonucleotide, exhibiting high binding affinity to complementary RNAs and high resistance to nuclease degradation. Here, we evaluate 2′-OMe-4′-thioribonucleosides for chemical modification on AMOs. Optimization of the modification pattern using a variety of chemically modified AMOs that are perfectly complementary to mature miR-21 revealed that the uniformly 2′-OMe-4′-thioribonucleoside–modified AMO was most potent. Further investigation showed that phosphorothioate modification contributed to long-term miR-122 inhibition by the 2′-OMe-4′-thioribonucleoside–modified AMO. Moreover, systemically administrated AMOs to mouse using a liposomal delivery system, YSK05-MEND, showed delivery to the liver and efficient inhibition of miR-122 activity at a low dose in vivo. |
---|