Cargando…

Rapid optical control of nociception with an ion channel photoswitch

Local anesthetics are effective in suppressing pain sensation, but most of these compounds act non-selectively, inhibiting the activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We have developed a photoisomerizable molecule...

Descripción completa

Detalles Bibliográficos
Autores principales: Mourot, Alexandre, Fehrentz, Timm, Feuvre, Yves Le, Smith, Caleb M., Herold, Christian, Dalkara, Deniz, Nagy, Frédéric, Trauner, Dirk, Kramer, Richard H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906498/
https://www.ncbi.nlm.nih.gov/pubmed/22343342
http://dx.doi.org/10.1038/nmeth.1897
_version_ 1782301483140644864
author Mourot, Alexandre
Fehrentz, Timm
Feuvre, Yves Le
Smith, Caleb M.
Herold, Christian
Dalkara, Deniz
Nagy, Frédéric
Trauner, Dirk
Kramer, Richard H.
author_facet Mourot, Alexandre
Fehrentz, Timm
Feuvre, Yves Le
Smith, Caleb M.
Herold, Christian
Dalkara, Deniz
Nagy, Frédéric
Trauner, Dirk
Kramer, Richard H.
author_sort Mourot, Alexandre
collection PubMed
description Local anesthetics are effective in suppressing pain sensation, but most of these compounds act non-selectively, inhibiting the activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We have developed a photoisomerizable molecule named QAQ (Quaternary ammonium – Azobenzene – Quaternary ammonium) that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and it has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Moreover, because intracellular QAQ accumulation is a consequence of nociceptive ion channel activity, QAQ-mediated photosensitization provides a new platform for understanding signaling mechanisms in acute and chronic pain.
format Online
Article
Text
id pubmed-3906498
institution National Center for Biotechnology Information
language English
publishDate 2012
record_format MEDLINE/PubMed
spelling pubmed-39064982014-01-30 Rapid optical control of nociception with an ion channel photoswitch Mourot, Alexandre Fehrentz, Timm Feuvre, Yves Le Smith, Caleb M. Herold, Christian Dalkara, Deniz Nagy, Frédéric Trauner, Dirk Kramer, Richard H. Nat Methods Article Local anesthetics are effective in suppressing pain sensation, but most of these compounds act non-selectively, inhibiting the activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We have developed a photoisomerizable molecule named QAQ (Quaternary ammonium – Azobenzene – Quaternary ammonium) that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and it has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Moreover, because intracellular QAQ accumulation is a consequence of nociceptive ion channel activity, QAQ-mediated photosensitization provides a new platform for understanding signaling mechanisms in acute and chronic pain. 2012-02-19 /pmc/articles/PMC3906498/ /pubmed/22343342 http://dx.doi.org/10.1038/nmeth.1897 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Mourot, Alexandre
Fehrentz, Timm
Feuvre, Yves Le
Smith, Caleb M.
Herold, Christian
Dalkara, Deniz
Nagy, Frédéric
Trauner, Dirk
Kramer, Richard H.
Rapid optical control of nociception with an ion channel photoswitch
title Rapid optical control of nociception with an ion channel photoswitch
title_full Rapid optical control of nociception with an ion channel photoswitch
title_fullStr Rapid optical control of nociception with an ion channel photoswitch
title_full_unstemmed Rapid optical control of nociception with an ion channel photoswitch
title_short Rapid optical control of nociception with an ion channel photoswitch
title_sort rapid optical control of nociception with an ion channel photoswitch
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906498/
https://www.ncbi.nlm.nih.gov/pubmed/22343342
http://dx.doi.org/10.1038/nmeth.1897
work_keys_str_mv AT mourotalexandre rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT fehrentztimm rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT feuvreyvesle rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT smithcalebm rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT heroldchristian rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT dalkaradeniz rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT nagyfrederic rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT traunerdirk rapidopticalcontrolofnociceptionwithanionchannelphotoswitch
AT kramerrichardh rapidopticalcontrolofnociceptionwithanionchannelphotoswitch