Cargando…
A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients
BACKGROUND: Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906686/ https://www.ncbi.nlm.nih.gov/pubmed/24463466 http://dx.doi.org/10.2196/jmir.2593 |
_version_ | 1782301507220144128 |
---|---|
author | Kononowicz, Andrzej A Narracott, Andrew J Manini, Simone Bayley, Martin J Lawford, Patricia V McCormack, Keith Zary, Nabil |
author_facet | Kononowicz, Andrzej A Narracott, Andrew J Manini, Simone Bayley, Martin J Lawford, Patricia V McCormack, Keith Zary, Nabil |
author_sort | Kononowicz, Andrzej A |
collection | PubMed |
description | BACKGROUND: Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. OBJECTIVE: The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. METHODS: The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. RESULTS: The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. CONCLUSIONS: This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome. |
format | Online Article Text |
id | pubmed-3906686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | JMIR Publications Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-39066862014-01-30 A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients Kononowicz, Andrzej A Narracott, Andrew J Manini, Simone Bayley, Martin J Lawford, Patricia V McCormack, Keith Zary, Nabil J Med Internet Res Original Paper BACKGROUND: Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients’ interactivity by enriching them with computational models of physiological and pathological processes. OBJECTIVE: The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. METHODS: The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. RESULTS: The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the description of four integration strategies, and the last element consisted of evaluation profiles specifying the relevant feasibility features and acceptance thresholds for specific purposes. The group of experts who evaluated the virtual patient exemplar found higher integration more interesting, but at the same time they were more concerned with the validity of the result. The observed differences were not statistically significant. CONCLUSIONS: This paper outlines a framework for the integration of computational models into virtual patients. The opportunities and challenges of model exploitation are discussed from a number of user perspectives, considering different levels of model integration. The long-term aim for future research is to isolate the most crucial factors in the framework and to determine their influence on the integration outcome. JMIR Publications Inc. 2014-01-23 /pmc/articles/PMC3906686/ /pubmed/24463466 http://dx.doi.org/10.2196/jmir.2593 Text en ©Andrzej A Kononowicz, Andrew J Narracott, Simone Manini, Martin J Bayley, Patricia V Lawford, Keith McCormack, Nabil Zary. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.01.2014. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Kononowicz, Andrzej A Narracott, Andrew J Manini, Simone Bayley, Martin J Lawford, Patricia V McCormack, Keith Zary, Nabil A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients |
title | A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients |
title_full | A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients |
title_fullStr | A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients |
title_full_unstemmed | A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients |
title_short | A Framework for Different Levels of Integration of Computational Models Into Web-Based Virtual Patients |
title_sort | framework for different levels of integration of computational models into web-based virtual patients |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906686/ https://www.ncbi.nlm.nih.gov/pubmed/24463466 http://dx.doi.org/10.2196/jmir.2593 |
work_keys_str_mv | AT kononowiczandrzeja aframeworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT narracottandrewj aframeworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT maninisimone aframeworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT bayleymartinj aframeworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT lawfordpatriciav aframeworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT mccormackkeith aframeworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT zarynabil aframeworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT kononowiczandrzeja frameworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT narracottandrewj frameworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT maninisimone frameworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT bayleymartinj frameworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT lawfordpatriciav frameworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT mccormackkeith frameworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients AT zarynabil frameworkfordifferentlevelsofintegrationofcomputationalmodelsintowebbasedvirtualpatients |