Cargando…

Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers

PURPOSE: The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes represe...

Descripción completa

Detalles Bibliográficos
Autores principales: Bowd, Christopher, Weinreb, Robert N., Balasubramanian, Madhusudhanan, Lee, Intae, Jang, Giljin, Yousefi, Siamak, Zangwill, Linda M., Medeiros, Felipe A., Girkin, Christopher A., Liebmann, Jeffrey M., Goldbaum, Michael H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907565/
https://www.ncbi.nlm.nih.gov/pubmed/24497932
http://dx.doi.org/10.1371/journal.pone.0085941