Cargando…
Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers
PURPOSE: The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes represe...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907565/ https://www.ncbi.nlm.nih.gov/pubmed/24497932 http://dx.doi.org/10.1371/journal.pone.0085941 |