Cargando…

Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers

PURPOSE: The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes represe...

Descripción completa

Detalles Bibliográficos
Autores principales: Bowd, Christopher, Weinreb, Robert N., Balasubramanian, Madhusudhanan, Lee, Intae, Jang, Giljin, Yousefi, Siamak, Zangwill, Linda M., Medeiros, Felipe A., Girkin, Christopher A., Liebmann, Jeffrey M., Goldbaum, Michael H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907565/
https://www.ncbi.nlm.nih.gov/pubmed/24497932
http://dx.doi.org/10.1371/journal.pone.0085941
Descripción
Sumario:PURPOSE: The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing statistically independent patterns of defect in the glaucoma clusters. METHODS: FDT measurements were obtained from 1,190 eyes with normal FDT results and 786 eyes with abnormal FDT results from the UCSD-based Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES). For all eyes, VIM input was 52 threshold test points from the 24-2 test pattern, plus age. RESULTS: FDT mean deviation was −1.00 dB (S.D. = 2.80 dB) and −5.57 dB (S.D. = 5.09 dB) in FDT-normal eyes and FDT-abnormal eyes, respectively (p<0.001). VIM identified meaningful clusters of FDT data and positioned a set of statistically independent axes through the mean of each cluster. The optimal VIM model separated the FDT fields into 3 clusters. Cluster N contained primarily normal fields (1109/1190, specificity 93.1%) and clusters G(1) and G(2) combined, contained primarily abnormal fields (651/786, sensitivity 82.8%). For clusters G(1) and G(2) the optimal number of axes were 2 and 5, respectively. Patterns automatically generated along axes within the glaucoma clusters were similar to those known to be indicative of glaucoma. Fields located farther from the normal mean on each glaucoma axis showed increasing field defect severity. CONCLUSIONS: VIM successfully separated FDT fields from healthy and glaucoma eyes without a priori information about class membership, and identified familiar glaucomatous patterns of loss.