Cargando…
Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers
PURPOSE: The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes represe...
Autores principales: | Bowd, Christopher, Weinreb, Robert N., Balasubramanian, Madhusudhanan, Lee, Intae, Jang, Giljin, Yousefi, Siamak, Zangwill, Linda M., Medeiros, Felipe A., Girkin, Christopher A., Liebmann, Jeffrey M., Goldbaum, Michael H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907565/ https://www.ncbi.nlm.nih.gov/pubmed/24497932 http://dx.doi.org/10.1371/journal.pone.0085941 |
Ejemplares similares
-
Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
por: Yousefi, Siamak, et al.
Publicado: (2016) -
Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs
por: Christopher, Mark, et al.
Publicado: (2018) -
Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression
por: Christopher, Mark, et al.
Publicado: (2018) -
Structural Change Can Be Detected in Advanced-Glaucoma Eyes
por: Belghith, Akram, et al.
Publicado: (2016) -
FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service
por: Terauchi, Ryo, et al.
Publicado: (2020)