Cargando…

Synchronized Analysis of FTIR Spectra and GCMS Chromatograms for Evaluation of the Thermally Degraded Vegetable Oils

Fourier Transform Infrared (FTIR) and Gas Chromatography Mass Spectrometry (GCMS) are two common instruments used for analysis of edible oils. The output signal is often analysed on the software attached to the workstations. The processing software is usually individualised for a specific source. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Sim, Siong Fong, Lee, Terri Zhuan Ean, Mohd Irwan Lu, Nurul Aida Lu, Samling, Benedict
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915895/
https://www.ncbi.nlm.nih.gov/pubmed/24563804
http://dx.doi.org/10.1155/2014/271970
Descripción
Sumario:Fourier Transform Infrared (FTIR) and Gas Chromatography Mass Spectrometry (GCMS) are two common instruments used for analysis of edible oils. The output signal is often analysed on the software attached to the workstations. The processing software is usually individualised for a specific source. The output of GCMS cannot be analysed on the FTIR hence analysts often need to juggle between instruments when multiple techniques are employed. This could become exhaustive when a large dataset is involved. This paper reports a synchronised approach for analysis of signal from FTIR and GCMS. The algorithm is demonstrated on a dataset of edible oils to investigate the thermal degradation of seven types of edible oils treated at 100°C and 150°C. The synchronised routines identify peaks present in FTIR and GCMS spectra/chromatograms where the information is subsequently extracted onto peak tables for further analysis. In this study, it is found that palm based products and corn oils were relatively more stable with higher content of antioxidants tocopherols and squalene. As a conclusion, this approach allows simultaneous analysis of signal from multiple sources and samples enhancing the efficiency of the signal processing process.