Cargando…
Interactive object modelling based on piecewise planar surface patches()
Detecting elements such as planes in 3D is essential to describe objects for applications such as robotics and augmented reality. While plane estimation is well studied, table-top scenes exhibit a large number of planes and methods often lock onto a dominant plane or do not estimate 3D object struct...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916791/ https://www.ncbi.nlm.nih.gov/pubmed/24511219 http://dx.doi.org/10.1016/j.cviu.2013.01.010 |
Sumario: | Detecting elements such as planes in 3D is essential to describe objects for applications such as robotics and augmented reality. While plane estimation is well studied, table-top scenes exhibit a large number of planes and methods often lock onto a dominant plane or do not estimate 3D object structure but only homographies of individual planes. In this paper we introduce MDL to the problem of incrementally detecting multiple planar patches in a scene using tracked interest points in image sequences. Planar patches are reconstructed and stored in a keyframe-based graph structure. In case different motions occur, separate object hypotheses are modelled from currently visible patches and patches seen in previous frames. We evaluate our approach on a standard data set published by the Visual Geometry Group at the University of Oxford [24] and on our own data set containing table-top scenes. Results indicate that our approach significantly improves over the state-of-the-art algorithms. |
---|