Cargando…

Effect of bevacizumab (Avastin™) on mitochondrial function of in vitro retinal pigment epithelial, neurosensory retinal and microvascular endothelial cells

PURPOSE: To evaluate the effect of bevacizumab on the mitochondrial function of human retinal pigment epithelial (ARPE-19), rat neurosensory retinal (R28) and human microvascular endothelial (HMVEC) cells in culture. MATERIALS AND METHODS: ARPE-19 and R28 cells were treated with 0.125, 0.25, 0.50 an...

Descripción completa

Detalles Bibliográficos
Autores principales: Luthra, Saurabh, Sharma, Ashish, Dong, Joyce, Neekhra, Aneesh, Gramajo, Ana L, Seigel, Gail M, Kenney, M Cristina, Kuppermann, Baruch D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917387/
https://www.ncbi.nlm.nih.gov/pubmed/24413824
http://dx.doi.org/10.4103/0301-4738.124750
Descripción
Sumario:PURPOSE: To evaluate the effect of bevacizumab on the mitochondrial function of human retinal pigment epithelial (ARPE-19), rat neurosensory retinal (R28) and human microvascular endothelial (HMVEC) cells in culture. MATERIALS AND METHODS: ARPE-19 and R28 cells were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab. The HMVEC cultures were treated with 0.125, 0.25, 0.50 and 1 mg/ml of bevacizumab or 1 mg/ml of immunoglobulin G (control). Mitochondrial function assessed by mitochondrial dehydrogenase activity (MDA) was determined using the WST-1 assay. RESULTS: Bevacizumab doses of 0.125 to 1 mg/ml for 5 days did not significantly affect the MDA of ARPE-19 cells. Bevacizumab treatment at 0.125 and 0.25 mg/ml (clinical dose) did not significantly affect the MDA of R28 cells; however, 0.50 and 1 mg/ml doses significantly reduced the R28 cell mitochondrial function. All doses of bevacizumab significantly reduced the MDA of proliferating and non-proliferating HMVEC. CONCLUSION: Bevacizumab exposure for 5 days was safe at clinical doses in both ARPE-19 and R28 retinal neurosensory cells in culture. By contrast, bevacizumab exposure at all doses show a significant dose-dependent decrease in mitochondrial activity in both the proliferating and non-proliferating HMVEC in vitro. This suggests a selective action of bevacizumab on endothelial cells at clinical doses.