Cargando…

Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate

The role of crosstalk between the Smad and the MAPK signaling pathways in activin-, transforming growth factor-β (TGF-β)-, hydroxyurea (HU) - and butyrate-dependent erythroid differentiation of K562 leukemic cells was studied. Treatment with all four inducers caused transient phosphorylation of Smad...

Descripción completa

Detalles Bibliográficos
Autores principales: Akel, Salem, Bertolette, Daniel, Ruscetti, Francis W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923467/
https://www.ncbi.nlm.nih.gov/pubmed/24533426
http://dx.doi.org/10.4172/2329-6917.1000109
_version_ 1782303621268897792
author Akel, Salem
Bertolette, Daniel
Ruscetti, Francis W
author_facet Akel, Salem
Bertolette, Daniel
Ruscetti, Francis W
author_sort Akel, Salem
collection PubMed
description The role of crosstalk between the Smad and the MAPK signaling pathways in activin-, transforming growth factor-β (TGF-β)-, hydroxyurea (HU) - and butyrate-dependent erythroid differentiation of K562 leukemic cells was studied. Treatment with all four inducers caused transient phosphorylation of Smad2/3 and MAPK proteins including ERK, p38 and JNK. Use of specific inhibitors of p38, ERK and JNK MAPK proteins, and TGF-β type I receptor indicated that differentiation induced by each of these agents involves activation of Smad2/3 and p38 MAPK, and inhibition of ERK MAPK. Also, treatment of cells with an inhibitor of protein serine/threonine phosphatase, okadaic acid (OA), induced phosphorylation of Smad2/3, and p38 MAPK, coincident with its induction of erythroid differentiation. Specific inhibition of TGF-β type I receptor kinase activity not only abolished TGF-β/activin effects but also prevented Smad2/3 activation and erythroid differentiation induced by OA, HU and butyrate. The TGF-β type I receptor kinase inhibitor blocked OA-induced differentiation but not p38 MAPK phosphorylation demonstrating that signals from both pathways are needed. As previously observed, addition of ERK1/2 MAPK inhibitors upregulated Smad2/3 phosphorylation and enhanced differentiation, but these effects were dependent on signals from the TGF-β type I receptor. These data indicate that activation of both Smad2/3 and p38 MAPK signaling pathways is a prerequisite to induce erythroid differentiation of erythroleukemia cells by activin, TGF-β, HU, OA and butyrate.
format Online
Article
Text
id pubmed-3923467
institution National Center for Biotechnology Information
language English
publishDate 2013
record_format MEDLINE/PubMed
spelling pubmed-39234672014-02-13 Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate Akel, Salem Bertolette, Daniel Ruscetti, Francis W J Leuk (Los Angel) Article The role of crosstalk between the Smad and the MAPK signaling pathways in activin-, transforming growth factor-β (TGF-β)-, hydroxyurea (HU) - and butyrate-dependent erythroid differentiation of K562 leukemic cells was studied. Treatment with all four inducers caused transient phosphorylation of Smad2/3 and MAPK proteins including ERK, p38 and JNK. Use of specific inhibitors of p38, ERK and JNK MAPK proteins, and TGF-β type I receptor indicated that differentiation induced by each of these agents involves activation of Smad2/3 and p38 MAPK, and inhibition of ERK MAPK. Also, treatment of cells with an inhibitor of protein serine/threonine phosphatase, okadaic acid (OA), induced phosphorylation of Smad2/3, and p38 MAPK, coincident with its induction of erythroid differentiation. Specific inhibition of TGF-β type I receptor kinase activity not only abolished TGF-β/activin effects but also prevented Smad2/3 activation and erythroid differentiation induced by OA, HU and butyrate. The TGF-β type I receptor kinase inhibitor blocked OA-induced differentiation but not p38 MAPK phosphorylation demonstrating that signals from both pathways are needed. As previously observed, addition of ERK1/2 MAPK inhibitors upregulated Smad2/3 phosphorylation and enhanced differentiation, but these effects were dependent on signals from the TGF-β type I receptor. These data indicate that activation of both Smad2/3 and p38 MAPK signaling pathways is a prerequisite to induce erythroid differentiation of erythroleukemia cells by activin, TGF-β, HU, OA and butyrate. 2013-04-22 /pmc/articles/PMC3923467/ /pubmed/24533426 http://dx.doi.org/10.4172/2329-6917.1000109 Text en Copyright: © 2013 Akel S, et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Article
Akel, Salem
Bertolette, Daniel
Ruscetti, Francis W
Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate
title Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate
title_full Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate
title_fullStr Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate
title_full_unstemmed Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate
title_short Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate
title_sort crosstalk between the smad and the mitogen-activated protein kinase pathways is essential for erythroid differentiation of erythroleukemia cells induced by tgf-β, activin, hydroxyurea and butyrate
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923467/
https://www.ncbi.nlm.nih.gov/pubmed/24533426
http://dx.doi.org/10.4172/2329-6917.1000109
work_keys_str_mv AT akelsalem crosstalkbetweenthesmadandthemitogenactivatedproteinkinasepathwaysisessentialforerythroiddifferentiationoferythroleukemiacellsinducedbytgfbactivinhydroxyureaandbutyrate
AT bertolettedaniel crosstalkbetweenthesmadandthemitogenactivatedproteinkinasepathwaysisessentialforerythroiddifferentiationoferythroleukemiacellsinducedbytgfbactivinhydroxyureaandbutyrate
AT ruscettifrancisw crosstalkbetweenthesmadandthemitogenactivatedproteinkinasepathwaysisessentialforerythroiddifferentiationoferythroleukemiacellsinducedbytgfbactivinhydroxyureaandbutyrate