Cargando…
Kinotypes: stable species- and individual-specific profiles of cellular kinase activity
BACKGROUND: Recently, questions have been raised regarding the ability of animal models to recapitulate human disease at the molecular level. It has also been demonstrated that cellular kinases, individually or as a collective unit (the kinome), play critical roles in regulating complex biology. Des...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924188/ https://www.ncbi.nlm.nih.gov/pubmed/24314169 http://dx.doi.org/10.1186/1471-2164-14-854 |
_version_ | 1782303713112621056 |
---|---|
author | Trost, Brett Kindrachuk, Jason Scruten, Erin Griebel, Philip Kusalik, Anthony Napper, Scott |
author_facet | Trost, Brett Kindrachuk, Jason Scruten, Erin Griebel, Philip Kusalik, Anthony Napper, Scott |
author_sort | Trost, Brett |
collection | PubMed |
description | BACKGROUND: Recently, questions have been raised regarding the ability of animal models to recapitulate human disease at the molecular level. It has also been demonstrated that cellular kinases, individually or as a collective unit (the kinome), play critical roles in regulating complex biology. Despite the intimate relationship between kinases and health, little is known about the variability, consistency and stability of kinome profiles across species and individuals. RESULTS: As a preliminary investigation of the existence of species- and individual-specific kinotypes (kinome signatures), peptide arrays were employed for the analysis of peripheral blood mononuclear cells collected weekly from human and porcine subjects (n = 6) over a one month period. The data revealed strong evidence for species-specific signalling profiles. Both humans and pigs also exhibited evidence for individual-specific kinome profiles that were independent of natural changes in blood cell populations. CONCLUSIONS: Species-specific kinotypes could have applications in disease research by facilitating the selection of appropriate animal models or by revealing a baseline kinomic signature to which treatment-induced profiles could be compared. Similarly, individual-specific kinotypes could have implications in personalized medicine, where the identification of molecular patterns or signatures within the kinome may depend on both the levels of kinome diversity and temporal stability across individuals. |
format | Online Article Text |
id | pubmed-3924188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39241882014-03-03 Kinotypes: stable species- and individual-specific profiles of cellular kinase activity Trost, Brett Kindrachuk, Jason Scruten, Erin Griebel, Philip Kusalik, Anthony Napper, Scott BMC Genomics Research Article BACKGROUND: Recently, questions have been raised regarding the ability of animal models to recapitulate human disease at the molecular level. It has also been demonstrated that cellular kinases, individually or as a collective unit (the kinome), play critical roles in regulating complex biology. Despite the intimate relationship between kinases and health, little is known about the variability, consistency and stability of kinome profiles across species and individuals. RESULTS: As a preliminary investigation of the existence of species- and individual-specific kinotypes (kinome signatures), peptide arrays were employed for the analysis of peripheral blood mononuclear cells collected weekly from human and porcine subjects (n = 6) over a one month period. The data revealed strong evidence for species-specific signalling profiles. Both humans and pigs also exhibited evidence for individual-specific kinome profiles that were independent of natural changes in blood cell populations. CONCLUSIONS: Species-specific kinotypes could have applications in disease research by facilitating the selection of appropriate animal models or by revealing a baseline kinomic signature to which treatment-induced profiles could be compared. Similarly, individual-specific kinotypes could have implications in personalized medicine, where the identification of molecular patterns or signatures within the kinome may depend on both the levels of kinome diversity and temporal stability across individuals. BioMed Central 2013-12-05 /pmc/articles/PMC3924188/ /pubmed/24314169 http://dx.doi.org/10.1186/1471-2164-14-854 Text en Copyright © 2013 Trost et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Trost, Brett Kindrachuk, Jason Scruten, Erin Griebel, Philip Kusalik, Anthony Napper, Scott Kinotypes: stable species- and individual-specific profiles of cellular kinase activity |
title | Kinotypes: stable species- and individual-specific profiles of cellular kinase activity |
title_full | Kinotypes: stable species- and individual-specific profiles of cellular kinase activity |
title_fullStr | Kinotypes: stable species- and individual-specific profiles of cellular kinase activity |
title_full_unstemmed | Kinotypes: stable species- and individual-specific profiles of cellular kinase activity |
title_short | Kinotypes: stable species- and individual-specific profiles of cellular kinase activity |
title_sort | kinotypes: stable species- and individual-specific profiles of cellular kinase activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924188/ https://www.ncbi.nlm.nih.gov/pubmed/24314169 http://dx.doi.org/10.1186/1471-2164-14-854 |
work_keys_str_mv | AT trostbrett kinotypesstablespeciesandindividualspecificprofilesofcellularkinaseactivity AT kindrachukjason kinotypesstablespeciesandindividualspecificprofilesofcellularkinaseactivity AT scrutenerin kinotypesstablespeciesandindividualspecificprofilesofcellularkinaseactivity AT griebelphilip kinotypesstablespeciesandindividualspecificprofilesofcellularkinaseactivity AT kusalikanthony kinotypesstablespeciesandindividualspecificprofilesofcellularkinaseactivity AT napperscott kinotypesstablespeciesandindividualspecificprofilesofcellularkinaseactivity |