Cargando…

Polycrystalline Silicon ISFETs on Glass Substrate

The Ion Sensitive Field Effect Transistor (ISFET) operation based on polycrystalline silicon thin film transistors is reported. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Feng, Estrela, Pedro, Mo, Yang, Migliorato, Piero, Maeda, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933903/
Descripción
Sumario:The Ion Sensitive Field Effect Transistor (ISFET) operation based on polycrystalline silicon thin film transistors is reported. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with PE-CVD Si(3)N(4) deposited on top of a conductor, which also provides the electrical connection to the remote TFT gate. Nearly ideal pH sensitivity (54 mV/pH) and stable operation have been achieved. Temperature effects have also been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The shift increases almost linearly upon the increase of penicillin concentration until saturation is reached for ∼ 7 mM. Poly-Si TFT structures with a gold sensing area have been also successfully applied to field-effect detection of DNA.