Cargando…
Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles
Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or a...
Autores principales: | Shojaie, Ali, Jauhiainen, Alexandra, Kallitsis, Michael, Michailidis, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938831/ https://www.ncbi.nlm.nih.gov/pubmed/24586224 http://dx.doi.org/10.1371/journal.pone.0082393 |
Ejemplares similares
-
Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks
por: Wang, Yi Kan, et al.
Publicado: (2013) -
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
por: Penfold, Christopher A., et al.
Publicado: (2012) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
Stable Gene Regulatory Network Modeling From Steady-State Data (†)
por: Larvie, Joy Edward, et al.
Publicado: (2016) -
Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms
por: Morgan, Daniel, et al.
Publicado: (2020)