Cargando…

A variant of sparse partial least squares for variable selection and data exploration

When data are sparse and/or predictors multicollinear, current implementation of sparse partial least squares (SPLS) does not give estimates for non-selected predictors nor provide a measure of inference. In response, an approach termed “all-possible” SPLS is proposed, which fits a SPLS model for al...

Descripción completa

Detalles Bibliográficos
Autores principales: Olson Hunt, Megan J., Weissfeld, Lisa, Boudreau, Robert M., Aizenstein, Howard, Newman, Anne B., Simonsick, Eleanor M., Van Domelen, Dane R., Thomas, Fridtjof, Yaffe, Kristine, Rosano, Caterina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939647/
https://www.ncbi.nlm.nih.gov/pubmed/24624079
http://dx.doi.org/10.3389/fninf.2014.00018