Cargando…
A variant of sparse partial least squares for variable selection and data exploration
When data are sparse and/or predictors multicollinear, current implementation of sparse partial least squares (SPLS) does not give estimates for non-selected predictors nor provide a measure of inference. In response, an approach termed “all-possible” SPLS is proposed, which fits a SPLS model for al...
Autores principales: | Olson Hunt, Megan J., Weissfeld, Lisa, Boudreau, Robert M., Aizenstein, Howard, Newman, Anne B., Simonsick, Eleanor M., Van Domelen, Dane R., Thomas, Fridtjof, Yaffe, Kristine, Rosano, Caterina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939647/ https://www.ncbi.nlm.nih.gov/pubmed/24624079 http://dx.doi.org/10.3389/fninf.2014.00018 |
Ejemplares similares
-
A multiple hold-out framework for Sparse Partial Least Squares
por: Monteiro, João M., et al.
Publicado: (2016) -
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
por: Chun, Hyonho, et al.
Publicado: (2010) -
Radial Basis Function-Sparse Partial Least Squares for Application to Brain Imaging Data
por: Yoshida, Hisako, et al.
Publicado: (2013) -
Multiset sparse partial least squares path modeling for high dimensional omics data analysis
por: Csala, Attila, et al.
Publicado: (2020) -
Discovering partial least squares with JMP
por: Cox, Ian, et al.
Publicado: (2013)