Cargando…
Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity()
African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940079/ https://www.ncbi.nlm.nih.gov/pubmed/24596669 http://dx.doi.org/10.1016/j.ijpddr.2013.12.001 |
_version_ | 1782305773907345408 |
---|---|
author | Lüscher, Alexandra Lamprea-Burgunder, Estelle Graf, Fabrice E. de Koning, Harry P. Mäser, Pascal |
author_facet | Lüscher, Alexandra Lamprea-Burgunder, Estelle Graf, Fabrice E. de Koning, Harry P. Mäser, Pascal |
author_sort | Lüscher, Alexandra |
collection | PubMed |
description | African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance. |
format | Online Article Text |
id | pubmed-3940079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-39400792014-03-04 Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() Lüscher, Alexandra Lamprea-Burgunder, Estelle Graf, Fabrice E. de Koning, Harry P. Mäser, Pascal Int J Parasitol Drugs Drug Resist Article African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance. Elsevier 2013-12-19 /pmc/articles/PMC3940079/ /pubmed/24596669 http://dx.doi.org/10.1016/j.ijpddr.2013.12.001 Text en © 2013 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Lüscher, Alexandra Lamprea-Burgunder, Estelle Graf, Fabrice E. de Koning, Harry P. Mäser, Pascal Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() |
title | Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() |
title_full | Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() |
title_fullStr | Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() |
title_full_unstemmed | Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() |
title_short | Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() |
title_sort | trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940079/ https://www.ncbi.nlm.nih.gov/pubmed/24596669 http://dx.doi.org/10.1016/j.ijpddr.2013.12.001 |
work_keys_str_mv | AT luscheralexandra trypanosomabruceiadeninephosphoribosyltransferasesmediateadeninesalvageandaminopurinolsusceptibilitybutnotadeninetoxicity AT lampreaburgunderestelle trypanosomabruceiadeninephosphoribosyltransferasesmediateadeninesalvageandaminopurinolsusceptibilitybutnotadeninetoxicity AT graffabricee trypanosomabruceiadeninephosphoribosyltransferasesmediateadeninesalvageandaminopurinolsusceptibilitybutnotadeninetoxicity AT dekoningharryp trypanosomabruceiadeninephosphoribosyltransferasesmediateadeninesalvageandaminopurinolsusceptibilitybutnotadeninetoxicity AT maserpascal trypanosomabruceiadeninephosphoribosyltransferasesmediateadeninesalvageandaminopurinolsusceptibilitybutnotadeninetoxicity |