Cargando…
Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway
G protein-coupled receptor 48 (Gpr48/Lgr4) is essential to regulate the development of multiple tissues in mice. The notion that Gpr48 functions in renal development prompted us to investigate the relation between Gpr48 and renal diseases. Using a Gpr48 knockout mice model, we observed that 66.7% Gp...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940658/ https://www.ncbi.nlm.nih.gov/pubmed/24595031 http://dx.doi.org/10.1371/journal.pone.0089835 |
_version_ | 1782305803892424704 |
---|---|
author | Dang, Yongyan Liu, Bei Xu, Peng Zhu, Pingya Zhai, Yimiao Liu, Mingyao Ye, Xiyun |
author_facet | Dang, Yongyan Liu, Bei Xu, Peng Zhu, Pingya Zhai, Yimiao Liu, Mingyao Ye, Xiyun |
author_sort | Dang, Yongyan |
collection | PubMed |
description | G protein-coupled receptor 48 (Gpr48/Lgr4) is essential to regulate the development of multiple tissues in mice. The notion that Gpr48 functions in renal development prompted us to investigate the relation between Gpr48 and renal diseases. Using a Gpr48 knockout mice model, we observed that 66.7% Gpr48 null mice developed polycystic lesions in the kidney, while no cysts were observed in the kidneys of wild-type mice. Polycystic kidney disease 1 (PKD1) and PKD2 expressions were also markedly decreased in the Gpr48 knockout mice. Abnormal expressions of exra-cellular matrix protein lead to the progression of polycystic kidney disease and the formation of renal fibrosis in the Gpr48 null mice. The expressions of several Wnt molecules and its receptors were increased and marked β-catenin nuclear accumulation was observed in the Gpr48 null mice. The inhibitors of Wnt/β-catenin signal pathway such as GSK3β and axin2 were loss of function. The Wnt/PCP signaling pathway is also activated in Gpr48 null mice. However, TGF-β expression and phosphorylated Smad2/3 levels were not altered. Collectively, our results showed that Gpr48 null mice are at a greater risk of suffering from polycystic lesions and renal fibrosis. Moreover, the formation of polycystic lesions and renal fibrosis induced by Gpr48 deficiency involves the activation of Wnt signaling pathway but not the TGF-β/Smad pathway. |
format | Online Article Text |
id | pubmed-3940658 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39406582014-03-06 Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway Dang, Yongyan Liu, Bei Xu, Peng Zhu, Pingya Zhai, Yimiao Liu, Mingyao Ye, Xiyun PLoS One Research Article G protein-coupled receptor 48 (Gpr48/Lgr4) is essential to regulate the development of multiple tissues in mice. The notion that Gpr48 functions in renal development prompted us to investigate the relation between Gpr48 and renal diseases. Using a Gpr48 knockout mice model, we observed that 66.7% Gpr48 null mice developed polycystic lesions in the kidney, while no cysts were observed in the kidneys of wild-type mice. Polycystic kidney disease 1 (PKD1) and PKD2 expressions were also markedly decreased in the Gpr48 knockout mice. Abnormal expressions of exra-cellular matrix protein lead to the progression of polycystic kidney disease and the formation of renal fibrosis in the Gpr48 null mice. The expressions of several Wnt molecules and its receptors were increased and marked β-catenin nuclear accumulation was observed in the Gpr48 null mice. The inhibitors of Wnt/β-catenin signal pathway such as GSK3β and axin2 were loss of function. The Wnt/PCP signaling pathway is also activated in Gpr48 null mice. However, TGF-β expression and phosphorylated Smad2/3 levels were not altered. Collectively, our results showed that Gpr48 null mice are at a greater risk of suffering from polycystic lesions and renal fibrosis. Moreover, the formation of polycystic lesions and renal fibrosis induced by Gpr48 deficiency involves the activation of Wnt signaling pathway but not the TGF-β/Smad pathway. Public Library of Science 2014-03-03 /pmc/articles/PMC3940658/ /pubmed/24595031 http://dx.doi.org/10.1371/journal.pone.0089835 Text en © 2014 Dang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dang, Yongyan Liu, Bei Xu, Peng Zhu, Pingya Zhai, Yimiao Liu, Mingyao Ye, Xiyun Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway |
title | Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway |
title_full | Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway |
title_fullStr | Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway |
title_full_unstemmed | Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway |
title_short | Gpr48 Deficiency Induces Polycystic Kidney Lesions and Renal Fibrosis in Mice by Activating Wnt Signal Pathway |
title_sort | gpr48 deficiency induces polycystic kidney lesions and renal fibrosis in mice by activating wnt signal pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940658/ https://www.ncbi.nlm.nih.gov/pubmed/24595031 http://dx.doi.org/10.1371/journal.pone.0089835 |
work_keys_str_mv | AT dangyongyan gpr48deficiencyinducespolycystickidneylesionsandrenalfibrosisinmicebyactivatingwntsignalpathway AT liubei gpr48deficiencyinducespolycystickidneylesionsandrenalfibrosisinmicebyactivatingwntsignalpathway AT xupeng gpr48deficiencyinducespolycystickidneylesionsandrenalfibrosisinmicebyactivatingwntsignalpathway AT zhupingya gpr48deficiencyinducespolycystickidneylesionsandrenalfibrosisinmicebyactivatingwntsignalpathway AT zhaiyimiao gpr48deficiencyinducespolycystickidneylesionsandrenalfibrosisinmicebyactivatingwntsignalpathway AT liumingyao gpr48deficiencyinducespolycystickidneylesionsandrenalfibrosisinmicebyactivatingwntsignalpathway AT yexiyun gpr48deficiencyinducespolycystickidneylesionsandrenalfibrosisinmicebyactivatingwntsignalpathway |