Cargando…

IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma

BACKGROUND: Cancer pain severely limits function and significantly reduces quality of life. Subtypes of sensory neurons involved in cancer pain and proliferation are not clear. METHODS: We produced a cancer model by inoculating human oral squamous cell carcinoma (SCC) cells into the hind paw of athy...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Yi, Bae, Sam S, Viet, Chi T, Troob, Scott, Bernabé, Daniel, Schmidt, Brian L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942073/
https://www.ncbi.nlm.nih.gov/pubmed/24524628
http://dx.doi.org/10.1186/1744-9081-10-5
_version_ 1782306029386596352
author Ye, Yi
Bae, Sam S
Viet, Chi T
Troob, Scott
Bernabé, Daniel
Schmidt, Brian L
author_facet Ye, Yi
Bae, Sam S
Viet, Chi T
Troob, Scott
Bernabé, Daniel
Schmidt, Brian L
author_sort Ye, Yi
collection PubMed
description BACKGROUND: Cancer pain severely limits function and significantly reduces quality of life. Subtypes of sensory neurons involved in cancer pain and proliferation are not clear. METHODS: We produced a cancer model by inoculating human oral squamous cell carcinoma (SCC) cells into the hind paw of athymic mice. We quantified mechanical and thermal nociception using the paw withdrawal assays. Neurotoxins isolectin B4-saporin (IB4-SAP), or capsaicin was injected intrathecally to selectively ablate IB4(+) neurons or TRPV1(+) neurons, respectively. JNJ-17203212, a TRPV1 antagonist, was also injected intrathecally. TRPV1 protein expression in the spinal cord was quantified with western blot. Paw volume was measured by a plethysmometer and was used as an index for tumor size. Ki-67 immunostaining in mouse paw sections was performed to evaluate cancer proliferation in situ. RESULTS: We showed that mice with SCC exhibited both mechanical and thermal hypersensitivity. Selective ablation of IB4(+) neurons by IB4-SAP decreased mechanical allodynia in mice with SCC. Selective ablation of TRPV1(+) neurons by intrathecal capsaicin injection, or TRPV1 antagonism by JNJ-17203212 in the IB4-SAP treated mice completely reversed SCC-induced thermal hyperalgesia, without affecting mechanical allodynia. Furthermore, TRPV1 protein expression was increased in the spinal cord of SCC mice compared to normal mice. Neither removal of IB4(+) or TRPV1(+) neurons affected SCC proliferation. CONCLUSIONS: We show in a mouse model that IB4(+) neurons play an important role in cancer-induced mechanical allodynia, while TRPV1 mediates cancer-induced thermal hyperalgesia. Characterization of the sensory fiber subtypes responsible for cancer pain could lead to the development of targeted therapeutics.
format Online
Article
Text
id pubmed-3942073
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-39420732014-03-05 IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma Ye, Yi Bae, Sam S Viet, Chi T Troob, Scott Bernabé, Daniel Schmidt, Brian L Behav Brain Funct Research BACKGROUND: Cancer pain severely limits function and significantly reduces quality of life. Subtypes of sensory neurons involved in cancer pain and proliferation are not clear. METHODS: We produced a cancer model by inoculating human oral squamous cell carcinoma (SCC) cells into the hind paw of athymic mice. We quantified mechanical and thermal nociception using the paw withdrawal assays. Neurotoxins isolectin B4-saporin (IB4-SAP), or capsaicin was injected intrathecally to selectively ablate IB4(+) neurons or TRPV1(+) neurons, respectively. JNJ-17203212, a TRPV1 antagonist, was also injected intrathecally. TRPV1 protein expression in the spinal cord was quantified with western blot. Paw volume was measured by a plethysmometer and was used as an index for tumor size. Ki-67 immunostaining in mouse paw sections was performed to evaluate cancer proliferation in situ. RESULTS: We showed that mice with SCC exhibited both mechanical and thermal hypersensitivity. Selective ablation of IB4(+) neurons by IB4-SAP decreased mechanical allodynia in mice with SCC. Selective ablation of TRPV1(+) neurons by intrathecal capsaicin injection, or TRPV1 antagonism by JNJ-17203212 in the IB4-SAP treated mice completely reversed SCC-induced thermal hyperalgesia, without affecting mechanical allodynia. Furthermore, TRPV1 protein expression was increased in the spinal cord of SCC mice compared to normal mice. Neither removal of IB4(+) or TRPV1(+) neurons affected SCC proliferation. CONCLUSIONS: We show in a mouse model that IB4(+) neurons play an important role in cancer-induced mechanical allodynia, while TRPV1 mediates cancer-induced thermal hyperalgesia. Characterization of the sensory fiber subtypes responsible for cancer pain could lead to the development of targeted therapeutics. BioMed Central 2014-02-13 /pmc/articles/PMC3942073/ /pubmed/24524628 http://dx.doi.org/10.1186/1744-9081-10-5 Text en Copyright © 2014 Ye et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Ye, Yi
Bae, Sam S
Viet, Chi T
Troob, Scott
Bernabé, Daniel
Schmidt, Brian L
IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma
title IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma
title_full IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma
title_fullStr IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma
title_full_unstemmed IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma
title_short IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma
title_sort ib4(+) and trpv1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942073/
https://www.ncbi.nlm.nih.gov/pubmed/24524628
http://dx.doi.org/10.1186/1744-9081-10-5
work_keys_str_mv AT yeyi ib4andtrpv1sensoryneuronsmediatepainbutnotproliferationinamousemodelofsquamouscellcarcinoma
AT baesams ib4andtrpv1sensoryneuronsmediatepainbutnotproliferationinamousemodelofsquamouscellcarcinoma
AT vietchit ib4andtrpv1sensoryneuronsmediatepainbutnotproliferationinamousemodelofsquamouscellcarcinoma
AT troobscott ib4andtrpv1sensoryneuronsmediatepainbutnotproliferationinamousemodelofsquamouscellcarcinoma
AT bernabedaniel ib4andtrpv1sensoryneuronsmediatepainbutnotproliferationinamousemodelofsquamouscellcarcinoma
AT schmidtbrianl ib4andtrpv1sensoryneuronsmediatepainbutnotproliferationinamousemodelofsquamouscellcarcinoma