Cargando…
Can mutation and selection explain virulence in human P. falciparum infections?
BACKGROUND: Parasites incur periodic mutations which must ultimately be eliminated to maintain their genetic integrity. METHODS: It is hypothesised that these mutations are eliminated not by the conventional mechanisms of competition between parasites in different hosts but primarily by competition...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC394339/ https://www.ncbi.nlm.nih.gov/pubmed/14992697 http://dx.doi.org/10.1186/1475-2875-3-2 |
Sumario: | BACKGROUND: Parasites incur periodic mutations which must ultimately be eliminated to maintain their genetic integrity. METHODS: It is hypothesised that these mutations are eliminated not by the conventional mechanisms of competition between parasites in different hosts but primarily by competition between parasites within the same infection. RESULTS: This process is enhanced by the production of a large number of parasites within individual infections, and this may significantly contribute to parasitic virulence. CONCLUSIONS: Several features of the most virulent human malaria parasite Plasmodium falciparum can usefully be re-interpreted in this light and lend support to this interpretation. More generally, it constitutes a novel explanation for the evolution of virulence in a wider range of microparasites. |
---|