Cargando…
Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels
BACKGROUND: Hedgehog signaling plays an important role in embryonic development, organogenesis and cancer. In the adult liver, Hedgehog signaling in non-parenchymal cells has been found to play a role in certain disease states such as fibrosis and cirrhosis. However, whether the Hedgehog pathway is...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946028/ https://www.ncbi.nlm.nih.gov/pubmed/24548465 http://dx.doi.org/10.1186/1478-811X-12-11 |
_version_ | 1782306602247782400 |
---|---|
author | Matz-Soja, Madlen Aleithe, Susanne Marbach, Eugenia Böttger, Jan Arnold, Katrin Schmidt-Heck, Wolfgang Kratzsch, Jürgen Gebhardt, Rolf |
author_facet | Matz-Soja, Madlen Aleithe, Susanne Marbach, Eugenia Böttger, Jan Arnold, Katrin Schmidt-Heck, Wolfgang Kratzsch, Jürgen Gebhardt, Rolf |
author_sort | Matz-Soja, Madlen |
collection | PubMed |
description | BACKGROUND: Hedgehog signaling plays an important role in embryonic development, organogenesis and cancer. In the adult liver, Hedgehog signaling in non-parenchymal cells has been found to play a role in certain disease states such as fibrosis and cirrhosis. However, whether the Hedgehog pathway is active in mature healthy hepatocytes and is of significance to liver function are controversial. FINDINGS: Two types of mice with distinct conditional hepatic deletion of the Smoothened gene, an essential co-receptor protein of the Hedgehog pathway, were generated for investigating the role of Hedgehog signaling in mature hepatocytes. The knockout animals (KO) were inconspicuous and healthy with no changes in serum transaminases, but showed a slower weight gain. The liver was smaller, but presented a normal architecture and cellular composition. By quantitative RT-PCR the downregulation of the expression of Indian hedgehog (Ihh) and the Gli3 transcription factor could be demonstrated in healthy mature hepatocytes from these mice, whereas Patched1 was upregulated. Strong alterations in gene expression were also observed for the IGF axis. While expression of Igf1 was downregulated, that of Igfbp1 was upregulated in the livers of both genders. Corresponding changes in the serum levels of both proteins could be detected by ELISA. By activating and inhibiting the transcriptional output of Hedgehog signaling in cultured hepatocytes through siRNAs against Ptch1 and Gli3, respectively, in combination with a ChIP assay evidence was collected indicating that Igf1 expression is directly dependent on the activator function of Gli3. In contrast, the mRNA level of Igfbp1 appears to be controlled through the repressor function of Gli3, while that of Igfbp2 and Igfbp3 did not change. Interestingly, body weight of the transgenic mice correlated well with IGF-I levels in both genders and also with IGFBP-1 levels in females, whereas it did not correlate with serum growth hormone levels. CONCLUSIONS: Our results demonstrate for the first time that Hedgehog signaling is active in healthy mature mouse hepatocytes and that it has considerable importance for IGF-I homeostasis in the circulation. These findings may have various implications for mouse physiology including the regulation of body weight and size, glucose homeostasis and reproductive capacity. |
format | Online Article Text |
id | pubmed-3946028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39460282014-03-09 Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels Matz-Soja, Madlen Aleithe, Susanne Marbach, Eugenia Böttger, Jan Arnold, Katrin Schmidt-Heck, Wolfgang Kratzsch, Jürgen Gebhardt, Rolf Cell Commun Signal Research BACKGROUND: Hedgehog signaling plays an important role in embryonic development, organogenesis and cancer. In the adult liver, Hedgehog signaling in non-parenchymal cells has been found to play a role in certain disease states such as fibrosis and cirrhosis. However, whether the Hedgehog pathway is active in mature healthy hepatocytes and is of significance to liver function are controversial. FINDINGS: Two types of mice with distinct conditional hepatic deletion of the Smoothened gene, an essential co-receptor protein of the Hedgehog pathway, were generated for investigating the role of Hedgehog signaling in mature hepatocytes. The knockout animals (KO) were inconspicuous and healthy with no changes in serum transaminases, but showed a slower weight gain. The liver was smaller, but presented a normal architecture and cellular composition. By quantitative RT-PCR the downregulation of the expression of Indian hedgehog (Ihh) and the Gli3 transcription factor could be demonstrated in healthy mature hepatocytes from these mice, whereas Patched1 was upregulated. Strong alterations in gene expression were also observed for the IGF axis. While expression of Igf1 was downregulated, that of Igfbp1 was upregulated in the livers of both genders. Corresponding changes in the serum levels of both proteins could be detected by ELISA. By activating and inhibiting the transcriptional output of Hedgehog signaling in cultured hepatocytes through siRNAs against Ptch1 and Gli3, respectively, in combination with a ChIP assay evidence was collected indicating that Igf1 expression is directly dependent on the activator function of Gli3. In contrast, the mRNA level of Igfbp1 appears to be controlled through the repressor function of Gli3, while that of Igfbp2 and Igfbp3 did not change. Interestingly, body weight of the transgenic mice correlated well with IGF-I levels in both genders and also with IGFBP-1 levels in females, whereas it did not correlate with serum growth hormone levels. CONCLUSIONS: Our results demonstrate for the first time that Hedgehog signaling is active in healthy mature mouse hepatocytes and that it has considerable importance for IGF-I homeostasis in the circulation. These findings may have various implications for mouse physiology including the regulation of body weight and size, glucose homeostasis and reproductive capacity. BioMed Central 2014-02-18 /pmc/articles/PMC3946028/ /pubmed/24548465 http://dx.doi.org/10.1186/1478-811X-12-11 Text en Copyright © 2014 Matz-Soja et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Matz-Soja, Madlen Aleithe, Susanne Marbach, Eugenia Böttger, Jan Arnold, Katrin Schmidt-Heck, Wolfgang Kratzsch, Jürgen Gebhardt, Rolf Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels |
title | Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels |
title_full | Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels |
title_fullStr | Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels |
title_full_unstemmed | Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels |
title_short | Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels |
title_sort | hepatic hedgehog signaling contributes to the regulation of igf1 and igfbp1 serum levels |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946028/ https://www.ncbi.nlm.nih.gov/pubmed/24548465 http://dx.doi.org/10.1186/1478-811X-12-11 |
work_keys_str_mv | AT matzsojamadlen hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels AT aleithesusanne hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels AT marbacheugenia hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels AT bottgerjan hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels AT arnoldkatrin hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels AT schmidtheckwolfgang hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels AT kratzschjurgen hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels AT gebhardtrolf hepatichedgehogsignalingcontributestotheregulationofigf1andigfbp1serumlevels |