Cargando…
Regulation of human telomerase splicing by RNA:RNA pairing
Telomerase adds telomeric repeats onto chromosome ends and is almost universally upregulated in human cancers. Here we demonstrate that RNA:RNA pairing regulates splicing of the catalytic subunit of human telomerase (TERT). Human alleles contain a variable number of 38 bp repeats within TERT intron...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948165/ https://www.ncbi.nlm.nih.gov/pubmed/24577044 http://dx.doi.org/10.1038/ncomms4306 |
Sumario: | Telomerase adds telomeric repeats onto chromosome ends and is almost universally upregulated in human cancers. Here we demonstrate that RNA:RNA pairing regulates splicing of the catalytic subunit of human telomerase (TERT). Human alleles contain a variable number of 38 bp repeats within TERT intron 6 (>1 kb from exon–intron junctions). At least nine repeats are required for generating the major non-functional ‘minus beta’ isoform, which skips exons 7 and 8. RNA:RNA pairing between the repeats and the pre-mRNA might bring exons 6 and 9 closer, thereby promoting exon skipping. To demonstrate this, we show that mutations within the repeat that abolish exon skipping are corrected by compensatory mutations in the pre-mRNA. This study thus identifies RNA:RNA pairing by repetitive sequences as a novel form of alternative splicing regulation in a gene crucial for cancer survival and sheds new light on functional roles for short repetitive sequences embedded deep within introns throughout the genome. |
---|